
BASIS Software Manual
Release v3.3 (fb18c98)

Andreas Schuh

February 02, 2017

Contents

1 Features 3

2 Quick Start 4
2.1 First Steps . 4

3 How-to Guides 11
3.1 Create/Modify a Project . 11
3.2 Using and Customizing Templates . 15
3.3 CMake Options . 17
3.4 Configure a Project . 20
3.5 Managing Test Data . 28
3.6 Documenting Software . 29
3.7 Branch and Release . 33
3.8 Packaging Software . 34
3.9 Install any Software . 35
3.10 Automated Testing . 43

4 Standards 49
4.1 Filesystem Layout . 49
4.2 Project Template . 55
4.3 Project Modularization . 61
4.4 Build of Script Targets . 65
4.5 Command-line Parsing . 66
4.6 Calling Conventions . 70

5 Guidelines 75
5.1 Plain Text Format . 75

6 Reference 77
6.1 Basic Tools . 77
6.2 CMake Modules . 77
6.3 Utilities . 77
6.4 Project Layout . 77

7 Support 78
7.1 Report Issue . 78
7.2 Frequently Asked Questions . 78

8 People 80

2

The CMake Build system And Software Implementation Standard (BASIS) makes it easy to create sharable soft-
ware and libraries that work together. This is accomplished by combining and documenting some of the best practices,
utilities, and open source projects available. More importantly, BASIS supplies a fully integrated suite of functionality
to make the whole process seamless!

1 Features

Project Creation

• Quick project setup with mad-libs style text substitution

• Customizable project templates

Standards

• Filesystem layout standards

• Basic software implementation standards

• Command-line parsing standards

• Coding Style Guidelines

Build system utilities

• New CMake Module APIs

• Version Control Integration

• Automatic Packaging

Documentation

• Documentation generation tools

• Manuals

• PDF and HTML output of each

• Integrated with CMake APIs

Testing

• Unit testing

• Continuous integration

• Executable testing frameworks

Program Execution

• Parsing library

• Command execution library

• Unix philosophy and tool chains

Supported Languages:

• C++, BASH, Python, Perl, MATLAB

Supported Packages:

• CMake, CPack, CTest/CDash, Doxygen, Sphinx, Git, Subversion, reStructuredText, gtest, gflags, Boost, and
many more, including custom packages.

3

http://www.cmake.org
http://www.cmake.org/Wiki/CMake:Packaging_With_CPack
http://cmake.org/Wiki/CMake/Testing_With_CTest
http://www.cdash.org/
http://www.stack.nl/~dimitri/doxygen/
http://sphinx-doc.org/
http://git-scm.com/
http://subversion.apache.org/
http://docutils.sourceforge.net/rst.html
https://code.google.com/p/googletest/
https://github.com/schuhschuh/gflags
http://www.boost.org

2 Quick Start

2.1 First Steps

The following steps will show you how to

• download and install BASIS on your system.

• use the so-called “basisproject” command line tool to create a new empty project.

• add some example source files and edit the build configuration files to build the executable and library files.

• build and test the example project.

You need to have a Unix-like operating system such as Linux or Mac OS X installed on your machine in order to follow
these steps. At the moment, there is no separate tutorial available for Windows users, but you can install CygWin as
an alternative. Note, however, that BASIS can also be installed and used on Windows. Only the tools for automated
software tests will not be available then. These tools are for advanced users who want to set up an automated software
build and test on dedicated test machines. The testing tools are not needed for what follows.

Install BASIS

Get a copy of the source code

Clone the Git repository from GitHub as follows:

mkdir -p ~/local/src
cd ~/local/src
git clone --depth=1 https://github.com/cmake-basis/BASIS.git basis
cd basis

or download a pre-packaged .tar.gz of the latest BASIS release and unpack it using the following command:

mkdir -p ~/local/src
cd ~/local/src
tar xzf /path/to/downloaded/cmake-basis-$version.tar.gz
cd cmake-basis-$version

Configure the build

Configure the build system using CMake 2.8.4 or a more recent version:

mkdir build && cd build
ccmake ..

• Press c to configure the project.

• Change CMAKE_INSTALL_PREFIX to ~/local.

• Set options BUILD_APPLICATIONS and BUILD_EXAMPLE to ON.

• Press g to generate the Makefiles and exit ccmake.

4

http://git-scm.com/
https://github.com/cmake-basis/BASIS/

Build and install BASIS

CMake has generated Makefiles for GNU Make. The build is thus triggered by the make command:

make

To install BASIS after the successful build, run the following command:

make install

As a result, CMake copies the built files into the installation tree as specified by the CMAKE_INSTALL_PREFIX
variable.

Set up the environment

For the following tutorial steps, set up your environment as follows. In general, however, only the change of the PATH
environment variable is recommended. The other environment variables are only needed for the tutorial sessions.

Using the C or TC shell (csh/tcsh):

setenv PATH "${HOME}/local/bin:${PATH}"
setenv BASIS_EXAMPLE_DIR "${HOME}/local/share/basis/example"
setenv HELLOBASIS_RSC_DIR "${BASIS_EXAMPLE_DIR}/hellobasis"

Using the Bourne Again SHell (bash):

export PATH="${HOME}/local/bin:${PATH} "
export BASIS_EXAMPLE_DIR="${HOME}/local/share/basis/example"
export HELLOBASIS_RSC_DIR="${BASIS_EXAMPLE_DIR}/hellobasis"

Create an Example Project

Create a new and empty project as follows:

basisproject create --name HelloBasis --description "This is a BASIS project." \
--root ~/local/src/hellobasis

The next command demonstrates that you can modify a previously created project by using the project tool again, this
time with the update command.

basisproject update --root ~/local/src/hellobasis --noexample --config-settings

Here we removed the example/ subdirectory and added some configuration file used by BASIS. These options could
also have been given to the initial command above instead.

See also:

The guide on how to Create/Modify a Project, BasisProject.cmake, and basis_project().

Install Your Project

The build and installation of the just created empty example project is identical to the build and installation of BASIS
itself:

5

https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6

mkdir ~/local/src/hellobasis/build
cd ~/local/src/hellobasis/build
cmake -D CMAKE_INSTALL_PREFIX=~/local ..
make

See also:

The guide on how to Install any Software.

Add an Executable

Copy the source file from the example to src/:

cd ~/local/src/hellobasis
cp ${HELLOBASIS_RSC_DIR}/helloc++.cxx src/

Add the following line to src/CMakeLists.txt under the section “executable target(s)”:

basis_add_executable(helloc++.cxx)

Alternatively, you can use the implementation of this example executable in Python, Perl, BASH or MATLAB. In case
of MATLAB, add also a dependency to MATLAB:

basisproject update --root ~/local/src/hellobasis --use MATLAB

Note: The basis_add_executable command, if given only a single (existing) source code file or directory as
argument, uses the name of this source file without extension or the name of the directory containing all source files
of the executable, respectively, as the build target name.

Change target properties

• The name of the output file is given by the OUTPUT_NAME property.

• To change this property, add the following line to the src/CMakeLists.txt file (after
basis_add_executable):

basis_set_target_properties(helloc++ PROPERTIES OUTPUT_NAME "hellobasis")

If you used another source file, you need to replace “helloc++” by its name (excl. the extension).

Test the Executable

Now build the executable from the previously added source code. As the build system has been configured before
using CMake, only GNU make has to be invoked. It will recognize the change of the CMakeLists.txt file and
therefore reconfigure the build system before re-building the software.

cd ~/local/src/hellobasis/build
make
bin/hellobasis
How is it going?

Install the executable and test it:

6

make install
hellobasis
How is it going?

Note that the hellobasis executable was installed into the ~/local/bin/ directory as we set the installation
root directory to ~/local using the CMAKE_INSTALL_PREFIX CMake variable. This directory should be listed
in your PATH environment variable when you followed the environment set up steps at the begin of this tutorial.

Add Libraries

Next, you will add three kinds of libraries, i.e., collections of binary or script code, to your example project. We
distinguish here between private, public, and script libraries. A private library is a library without public interface
which is only used by other libraries and in particular executables of the project itself. A public library provides a
public interface for users of your software. Therefore, the declarations of the interface given by .h files in case of
C/C++ are copied to the installation directory along with the binary library file upon installation. Another kind of
library is one written in a scripting language such as Python, Perl, or BASH. Such library is more commonly referred
to as module.

Add a private library

Copy the files from the example to src/:

cd ~/local/src/hellobasis
cp ${HELLOBASIS_RSC_DIR}/foo.* src/

Add the following line to src/CMakeLists.txt under the section “library target(s)”:

basis_add_library(foo foo.cxx)

Add a public library

Create the subdirectory tree for the public header files declaring the public interface:

cd ~/local/src/hellobasis
basisproject update --root . --include
mkdir include/hellobasis

Copy the files from the example. The public interface is given by bar.h.

cp ${HELLOBASIS_RSC_DIR}/bar.cxx src/
cp ${HELLOBASIS_RSC_DIR}/bar.h include/hellobasis/

Add the following line to src/CMakeLists.txt under the section “library target(s)”:

basis_add_library(bar bar.cxx)

Add a scripted module

Copy the example Perl module to src/:

cd ~/local/src/hellobasis
cp ${HELLOBASIS_RSC_DIR}/FooBar.pm.in src/

7

Add the following line to src/CMakeLists.txt under the section “library target(s)”:

basis_add_library(FooBar.pm)

Note: Unlike C++ libraries, which are commonly build from multiple source files, libraries written in a scripting
language are separate script module files. Therefore, basis_add_library can be called with only a single ar-
gument, the name of the library source file. The name of this source file will be used as build target name including
the file name extension, with . replaced by _. This is to avoid name conflicts between library modules written in
different languages which have the same name such as, for example, the BASIS Utilities for Python (basis.py),
Perl (basis.pm), and Bash (basis.sh).

8

The .in suffix

• Note that some of these files have a .in file name suffix.

• This suffix can be omitted in the basis_add_library statement. It has however an impact on how this
function treats this file.

• The .in suffix indicates that the file is not usable as is, but contains patterns such as @PROJECT_NAME@ which
BASIS should replace during the build of the module.

• The substitution of these @*@ patterns is what we refer to as “building” script files.

Install the libraries

Now build the libraries and install them:

cd ~/local/src/hellobasis/build
make && make install

Create a Modularized Repository

BASIS is designed to integrate multiple BASIS libraries as part of a modular build system where components can be
added and removed with ease. A top-level repository contains one or more modules or sub-projects, then builds those
modules based on their dependencies.

See also:

See Modularize a Project for usage instructions, Project Template for a reference implementation, and Project Modu-
larization for the design.

Create a Top Level Project

export TOPLEVEL_DIR="${HOME}/local/src/collection"
basisproject create --name Collection --description "This is a BASIS TopLevel project. It demonstrates a modular project organization." --root ${TOPLEVEL_DIR} --toplevel

Create a Sub-project Containing a Library

Create a sub-project module similarly to how helloBasis was created earlier.

export MODA_DIR="${HOME}/local/src/collection/modules/moda"
basisproject create --name moda --description "Subproject library to be used elsewhere" --root ${MODA_DIR} --module --include
cp ${HELLOBASIS_RSC_DIR}/moda.cxx ${MODA_DIR}/src/
mkdir ${MODA_DIR}/include/moda
cp ${HELLOBASIS_RSC_DIR}/moda.h ${MODA_DIR}/include/moda/

Add the following line to ${MODA_DIR}/src/CMakeLists.txt under the section “library target(s)”:

basis_add_library(moda SHARED moda.cxx)

Create a Sub-project that uses the Library

Create a sub-project module similarly to how helloBasis was created earlier.

9

export MODB_DIR="${TOPLEVEL_DIR}/modules/modb"
basisproject create --name modb --description "User example subproject executable utility repository that uses the library" --root ${MODB_DIR} --module --src --use moda
cp ${HELLOBASIS_RSC_DIR}/userprog.cxx ${MODB_DIR}/src/

Add the following line to ${MODB_DIR}/src/CMakeLists.txt under the section “executable target(s)”:

basis_add_executable(userprog.cxx)
basis_target_link_libraries(userprog moda)

Install the Projects

mkdir ${TOPLEVEL_DIR}/build
cd ${TOPLEVEL_DIR}/build
cmake -D CMAKE_INSTALL_PREFIX=~/local -D MODULE_moda=ON -D MODULE_modb=ON ..

make install

Next Steps

Congratulations! You just finished your first BASIS tutorial.

So far you have already learned how to install BASIS on your system and set up your own software project. You have
also seen how you can add your own source files to your newly created project and build the respective executables
and libraries. The essentials of any software package! Thanks to BASIS, only few lines of CMake code are needed to
accomplish this.

Now check out the various How-to Guides which will introduce you to even more BASIS concepts and best practices.

10

3 How-to Guides

The how-to guides describe BASIS concepts and best practices which help to conform with the Standards defined by
BASIS, and explain common tasks such as creating a new project or its installation.

3.1 Create/Modify a Project

This how-to guide introduces the basisproject command-line tool which is installed as part of BASIS. This tool
is used to create a new project based on BASIS or to modify an existing BASIS project. The creation of a new project
based on BASIS is occasionally also referred to as instantiating the Project Template.

For a detailed description and overview of the available command options, please refer to the output of the following
command:

basisproject --help

Create a New Project

The fastest way to create a new project is to call basisproject with the name of the new project and a brief project
description as arguments:

basisproject create --name MyProject \
--description "This is a brief description of the project."

Note: Use the –full option to create a project from all template features. Most projects, however, will only need the
default set of features.

This will create a subdirectory called MyProject under the current working directory and populate it with the
standard project directory structure and BASIS configuration. No CMake commands to resolve dependencies to other
software packages will be added. These can be added later either manually or as described below. However, if you
know already that your project will depend, for example, on ITK and optionally make use of VTK if available, you
can specify these dependencies when creating the project using the --use or --useopt option, respectivley:

basisproject create --name MyProject \
--description "This is a brief description of the project." \
--use ITK --useopt VTK

The basisproject tool will in turn modify the BasisProject.cmake file to add the named packages to the corre-
sponding lists of dependencies.

Note: In order for basisproject to be able to find the correct place where to insert the new dependencies, the
#<dependency> et al. placeholders have to be present. See the BasisProject.cmake template file.

Modify an Existing Project

basisproject allows a detailed selection of the features included in the project template for a particular BASIS
project. Which of these features are needed will often not be known during the creation of the project, but change
during the work on the project. Therefore, an existing BASIS project which was created as described above can be
modified using basisproject to add or remove certain project features and to conveniently add CMake commands
to resolve further dependencies on other software packages. How this is done is described in the following.

11

http://www.itk.org/
http://www.vtk.org/

General Notes

The two project attributes which cannot be modified using basisproject are the project name and its description.
These attributes need to be modified manually by editing the project files. Be aware that changing the project name
may require the modification of several project files including source files. Furthermore, the project name is used to
identify the project within the lab and possibly even externally. Therefore, it should be fixed as early as possible. In
order to change the project description, simply edit the BasisProject.cmake file which you can find in the top directory
of the source tree. Specifically, the argument for the DESCRIPTION option of the basis_project() function.

Hence, in order to modify an existing project, the --name and --description options cannot be used. Instead,
use the --root option to specify the root directory of the source tree of the project you want to modify or run the
command without either of these options with the root directory as current working directory.

Adding Features

By features, we refer here to the set of directories and contained CMake/BASIS configuration files for which template
files exist in the BASIS project template. For a list of available project features, please have a look at the help output
of basisproject. You can either select a pre-configured project template consisting of a certain set of directories
and configuration files and optionally modify these sets by removing features from them and/or adding other features,
or you can simply remove and/or add selected features only from/to the current set of directories and configuration
files which already exist in the project’s source tree.

For example, if you created a project using the standard project template (i.e., by supplying no particular option or the
option --standard during the project creation), but your software requires auxiliary data such as a pre-computed
lookup table or a medical image atlas, you can add the data/ directory in which these auxiliary files should be stored
in the source tree using the command:

basisproject update --data

As another example, if you want to extend the default script configuration file which is used to configure the build of
scripts written in Python, Perl, BASH, or any other scripting language (even if not currently supported by BASIS will
it likely still be able to “build” these), use the command:

basisproject update --config-script

Removing Features

For example, in order to remove the conf/Settings.cmake file and the example/ directory tree, run the
command:

basisproject update --noconfig-settings --noexample

If any of the project files which were initially added during the project creation differ from the original project file,
the removal of such files will fail with an error message. If you are certain that the changes are not important and still
want to remove those files from the project, use the --force option. Moreover, if a directory is not empty, it will
only be removed if the --force option is given. Note that a directory is also considered empty if it only contains
hidden subdirectories which are used by the revision control software to manage the revisions of the files inside this
directory, i.e., the .svn/ subdirectory in case of Subversion or the .git/ subdirectory in case of Git. Before using
the --force option, you should be certain which directories would be removed and if their content is no longer
needed. Thus, run any command first without the --force option, and only if it failed consider to add the --force
option.

12

https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6

Adding Dependencies

A dependency is either a program required by your software at runtime or an external software package such as the
nifticlib or ITK. basisproject can be used to add the names of packages your project depends on to the lists of
dependencies which are given as arguments to the basis_project() command. For each named package in this list, the
basis_find_package() command is called to look for a corresponding package installation. In order to understand how
CMake searches for external software packages, please read the documentation of CMake’s find_package() command.

The BASIS package provides so-called Find modules (e.g., FindMATLAB.cmake or FindNiftiCLib.cmake) for exter-
nal software packages which are commonly used at SBIA and not (yet) part of CMake or improve upon the standard
modules. If you have problems resolving the dependency on an external software package required by your software
due to a missing corresponding Find module, please contact the maintainer of the BASIS project and state your interest
in a support by BASIS for this particular software package. Alternatively, you can write such Find module yourself
and save it in the PROJECT_CONFIG_DIR of your project.

As an example on how to add another dependency to an existing BASIS project, consider the following scenario. We
created a project without any dependency and now notice that we would like to make use of ITK in our implementation.
Thus, in order to add CMake code to the build configuration to resolve the dependency on ITK, which also includes
the so-called Use file of ITK (named UseITK.cmake) to import its build configuration, run the command:

basisproject update --use ITK

If your project can optionally make use of the features of a certain external software package, but will also built and
run without this package being installed, you can use the --useopt option to exploit CMake code which tries to find
the software package, but will not cause CMake to fail if the package was not found. In this case, you will need to
consider the <Pkg>_FOUND variable in order to decide whether to make use of the software package or not. Note that
the package name is case sensitive and that the case must match the one of the first argument of basis_find_package().

For example, let’s assume your software can optionally make use of CUDA. Therefore, as CMake includes already a
FindCUDA.cmake module, we can run the following command in order to have CMake look for an installation of
the CUDA libraries:

basisproject update --useopt CUDA

If this search was successful, the CMake variable CUDA_FOUND will be TRUE, and FALSE otherwise.

Another example of a dependency on an external package is the compilation of MATLAB source files using the
MATLAB Compiler (MCC). In this case, you need to add a dependency on the MATLAB package. Please note that it
is important to capitalize the package name and not to use Matlab as this would refer to the FindMatlab.cmake
module included with CMake. The FindMATLAB.cmake module which we are using is included with BASIS. It
improves the way CMake looks for a MATLAB installation and furthermore looks for executables required by BASIS,
such as in particular matlab, mcc, and mex. Use the following command to add a dependency on MATLAB:

basisproject update --use MATLAB

Removing Dependencies

basisproject does not currently support the removal of previously added dependencies. Therefore, please edit
the BasisProject.cmake file manually and simply remove all CMake code referring to the particular package you do
no longer require or use.

Modularize a Project

Project Modularization is a technique that aims to maximize code reusability, allowing components to be split up as
independent modules that can be shared with other projects while only building and packaging the components that
are really needed. Modularized projects consist of a Top Level Project and one or more Project Modules.

13

http://niftilib.sourceforge.net/
http://www.itk.org/
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gac9a1326ff8b06b17aebbb6b852ca73af
http://www.cmake.org/cmake/help/v2.8.8/cmake.html#command:find_package
https://cmake-basis.github.io/apidoc/latest/group__CMakeFindModules.html
https://cmake-basis.github.io/apidoc/latest/FindMATLAB_8cmake.html
https://cmake-basis.github.io/apidoc/latest/FindNiftiCLib_8cmake.html
https://cmake-basis.github.io/apidoc/latest/group__BasisDirectories.html#ga6eca623aced1386555dcea2557fb8747
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gac9a1326ff8b06b17aebbb6b852ca73af
http://www.mathworks.com/products/compiler/
https://cmake-basis.github.io/apidoc/latest/FindMATLAB_8cmake.html

Create the Top Level Project

First create the top-level project as follows (or simply add a modules/ directory to an existing project):

basisproject create --name MyToolkit --description "A modularized project." --toplevel

Create the Modules

To add modules to your Top Level project, which has a modules/ subdirectory, change to the modules/ subdirectory
of the top-level project, and run the command:

cd MyToolkit/modules
basisproject create --name MyModule --description "A module in MyToolkit." --module

More than one module can be in the same folder:

basisproject create --name OtherModule --description "Another module in MyToolkit." --module

You may also add an existing BASIS project module to the /modules folder, but not another Top Level project.

Configure the build

Configure the build system using CMake 2.8.4 or a more recent version:

cd ../..
mkdir build && cd build
ccmake ../MyToolkit

• Press c to configure the project.

• Change CMAKE_INSTALL_PREFIX to ~/local.

• Set option BUILD_ALL_MODULES to ON.

• Press g to generate the Makefiles and exit ccmake.

See also:

Module CMake Variables

Build the Top Level Project and its Modules

CMake has generated Makefiles for GNU Make. The build and installation are then thus triggered with the make
command:

make
make install

As a result, CMake copies the built files into the installation tree as specified by the CMAKE_INSTALL_PREFIX
variable.

Upgrade a Project

Occasionally, the project template of BASIS may be modified as the development of BASIS progresses, you may want
or need to upgrade the files from a previous version to the current version of the template. basisproject provides
the ability to upgrade by using a three-way file comparison similar to Subversion to merge changes in the template

14

files with those changes you have made to the corresponding files of your project. If such merge fails because both
the template as well as the project file have been changed at the same lines, a merge conflict occurs which has to be
resolved manually. However, basisproject will never discard your changes. There will always be a backup of
your current project file before the automatic file merge is performed.

To upgrade the project files, run the following command in the root directory of your project’s source tree:

basisproject upgrade

If the project template has not been changed since the last upgrade, no files will be modified by this command.

Resolving Merge Conflicts

When the same lines of the template file as well as the project file have been modified since the creation or last update
of the project, you will get a merge conflict. A merge conflict results in a merged project file which contains the
changes of both the template and your current project file. Markers such as the following are used to highlight the
lines of the merged file which are in conflict with each other.

Marker Description
<<<<<<< Marks the start of conflicting lines. This marker is followed by your changes from the correspond-

ing lines of your project file.
||||||| Marks the start of the corresponding lines from the original template file which was used to create

the project or which the project has been updated to last.
======= Marks the start of the corresponding lines from the current template file, i.e., the one the project

file should be updated to.
>>>>>>> Marks the end of the conflicting lines.

In order to resolve the conflicts in one file, you have to edit the merged project file manually. For reference,
basisproject writes the new template file to a file named like the project file in conflict with this project file,
using .template as file name suffix. It further keeps a backup of your current project file before the update. The file
name suffix for this backup file is .mine. For example, if conflicts occured when updating the README.txt file,
the following files are written to your project’s directory.

File Name Description
README.txt.mine A copy of the project file before the update.
README.txt.template A copy of the current template file which differs from the template file used to

create the project or corresponds to the version of the template file of the last
update.

README.txt The file containing changes from both the README.txt.template and
README.txt.mine file, where conflicts have been highlighted using above
markers.

After you edited the project files which contain conflicts, possibly using merge tools installed on your system, you need
to remove the .template and .mine files to let basisproject know that the conflicts are resolved. Otherwise,
when you run the update command again, it will fail with an error message indicating that there are unresolved merge
conflicts. You can delete those files either manually or using the following command in the root directory of your
project’s source tree.

basisproject upgrade --cleanup

3.2 Using and Customizing Templates

The BASIS Project Templates define how the basisproject utility performs quick project setup with mad-libs
style text substitution. In other words, the template defines what substitution options are available when you run the
basisproject command, and what files are created in a new or updated project.

15

Available Templates

Name Version Description
basis 1.1 This is the default template provided by BASIS and the one we recommend. It is easy to get

started with and follows all of the BASIS Standards. To use it simply follow the Quick Start.
sbia 1.8 The original template for the Section of Biomedical Image Analysis (SBIA) of the University

of Pennsylvania. This template will only be useful as an example for those that are not a
member of this group.

custom n/a You can create your own custom template. For instructions see the Create a Custom Template
section below.

You can find the actual templates provided by BASIS in the data/templates directory.

Use a Template

To use a template provided by BASIS or one that you have created, specify the name of the template including the
version as subdirectory as part of the basisproject command as follows:

basisproject create --name MyProject --template basis/1.1

If you want to use your own custom template, simply specify the full path to the respective template directory which
contains the template configuration file named _config.py. A relative file path must be relative to the current
working directory. Other than that you can use your custom template in the same manner as described in The How-To
on Creating and Modifying a Project.

Change the Default Template

During the installation of BASIS, it is possible to specify a custom template as the default used by basisproject
when called without the --template argument. See the BasisInstallationOptions for details.

Create a Custom Template

The template includes the files that are generated and the parameters that are available to the basisproject utility.
If you plan to create new projects frequently and have some special requirements or files that you need it may be
worthwhile to create a custom template. That way everything can be instantly set up in exactly the way you need.

See also:

The Project Template Standard explains the layout of templates, versioning, and how custom substitutions work.

In addition to creating new projects from an existing project template, the basisproject command-line tool can
also be used to generate a new Project Template customized for your needs.

The fastest way to create a new template is to call basisproject with the name of the new template and the option
--new-template. Use :

basisproject create --name MyTemplate --new-template [--optional-command-options]

This will create a subdirectory called MyTemplate/1.0 under the current working directory and populate it with
the current default project template structure and BASIS configuration. To copy an entire existing template, use the
--full option and possibly --template to specify the location or name and version of the existing template.

For a detailed description and overview of the available command options, please refer to the output of the
basisproject help create command. The template options of the existing template can be used to spec-
ify which features to copy when creating the new template.

16

https://github.com/cmake-basis/BASIS/tree/master/data/templates/basis
https://github.com/cmake-basis/BASIS/tree/master/data/templates/basis/1.1
https://github.com/cmake-basis/BASIS/tree/master/data/templates/sbia
http://www.cbica.upenn.edu/sbia/
http://www.upenn.edu/
http://www.upenn.edu/

With this you can modify the the default substitutions and file contents for your needs. You can also create new
versions so that users can update their source tree automatically as you improve and update your customized template.

3.3 CMake Options

The following BASIS specific options are available when building packages. For the full set of options and descriptions
use the ccmake tool. For CMake specific options see the documentation for your CMake installation.

The following standard CMake options/variables can be configured, see the documentation of CMake itself for more
details:

Standard CMake

-DCMAKE_BUILD_TYPE:STRING
Specify the build configuration to build. If not set, the Release configuration will be build. Common values
are Release or Debug.

-DCMAKE_INSTALL_PREFIX:PATH
Prefix used for package installation. See also the CMake reference.

-DUSE_<Package>:BOOL
If the software you are building has declared optional dependencies, i.e., software packages which it makes
use of only if available, for each such optional package a USE_<Package> option is added by BASIS if this
package was found on your system. It can be set to OFF in order to disable the use of this optional dependency
by this software.

BASIS Options

There are a number of CMake options that are specific to BASIS listed throughout the following documents:

• Filesystem Layout

• Module CMake Variables

Frequently Used

-DBASIS_DIR:PATH
Directory where the BASISConfig.cmake file is located. Alternatively, the installation prefix used to install
BASIS can be specified instead.

-DBUILD_DOCUMENTATION:BOOL
Whether build and installation instructions for the documentation should be added. If OFF, the build config-
uration of the doc/ directory is skipped. Otherwise, the doc target is added which can be used to build the
documentation. You may still need to run make doc, make manual, make site, etc. by hand, this option enables
those settings.

Note: Though surprising at first glance, the build of the documentation may often be preceeded by the build of the
software itself. The reason is that the documentation can in general only be generated after script files have been
configured. Thus, do not be surprised if make doc will actually first build the software if not up to date before
generating the API documentation.

-DBUILD_EXAMPLE:BOOL
Whether the examples should be built (if required) and/or installed.

17

http://www.cmake.org/cmake/help/runningcmake.html
http://www.cmake.org/
http://www.cmake.org/
http://www.cmake.org/
http://www.cmake.org/cmake/help/v2.8.8/cmake.html#variable:CMAKE_INSTALL_PREFIX

-DBUILD_TESTING:BOOL
Whether the testing tree should be built and system tests, i.e., tests that execute the installed programs and
compare the outputs to the expected results should be installed (if done so by the software package).

Advanced

Advanced users may further be interested in the settings of the following options which in most cases are automatically
derived from the non-advanced CMake options summarized above. To view these options in the CMake GUI, press
the t key in ccmake (Unix) or check the Show Advanced Values box (Windows).

-DBASIS_ALL_DOC:BOOL
Request the build of all documentation targets as part of the ALL target if BUILD_DOCUMENTATION is ON.

-DBASIS_COMPILE_SCRIPTS:BOOL
Enable compilation of Python modules. If this option is enabled, only the compiled .pyc files are installed.

-DBASIS_COMPILE_MATLAB:BOOL
Whether to compile MATLAB sources using the MATLAB Compiler (mcc) if available. If set to OFF, the
MATLAB source files are copied as part of the installation and a Bash script for the execution of matlab
with the -c option is generated on Unix or a Windows NT Command script on Windows, respectively. This
allows the convenient execution of the executable implemented in MATLAB even without having a license for
the MATLAB Compiler. Each instance of the built executable will take up one MATLAB license, however.
Moreover, the startup of the executable is longer every time, not only the first time it is launched as is the case
for mcc compiled executables. It is therefore recommended to enable this option and to obtain a MATLAB
Compiler license if possible. By default, this option is ON.

-DBASIS_DEBUG:BOOL
Enable debugging messages during build configuration.

-DBASIS_INSTALL_APIDOC_DIR:PATH
Installation directory of the API documentation relative to the installation prefix.

-DBASIS_INSTALL_RPATH:BOOL
Whether to have BASIS set the appropriate INSTALL_RPATH property of executables and shared libraries in-
stead of CMake. This option is ON by default which complies with the BASIS standard. Note that this option may
be overridden by the project developer or on the command-line by setting the variable CMAKE_SKIP_RPATH
to FALSE. This is typcially done in the config/Settings.cmake.

-DBASIS_INSTALL_SCHEME:STRING
Installation scheme, i.e., filesystem hierarchy, to use for the installation of the software files relative to the
installation prefix specified by the -DCMAKE_INSTALL_PREFIX . Valid values are default, usr, opt, or
win. See Installation Tree as defined by the Filesystem Layout of BASIS for more details.

-DBASIS_INSTALL_SITE_DIR:PATH
Installation directory of the web site relative to the installation prefix.

-DBASIS_INSTALL_SITE_PACKAGES:BOOL
Whether to install public module libraries written in a scripting language such as Python or Perl in the system-
wide default locations for site packages. This option is disabled by default as write permission to these directo-
ries are required otherwise.

-DBASIS_MCC_FLAGS:STRING
Additional flags for MATLAB Compiler separated by spaces.

-DBASIS_MCC_MATLAB_MODE:BOOL
Whether to call the MATLAB Compiler in MATLAB mode. If ON, the MATLAB Compiler is called from within
a MATLAB interpreter session, which results in the immediate release of the MATLAB Compiler license once
the compilation is done. Otherwise, the license is reserved for a fixed amount of time (e.g. 30 min).

18

http://www.cmake.org/cmake/help/runningcmake.html
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/compiler/
http://www.mathworks.com/products/compiler/

-DBASIS_MCC_RETRY_ATTEMPTS:INT
Number of times the compilation of MATLAB Compiler target is repeated in case of a license checkout error.

-DBASIS_MCC_RETRY_DELAY:INT
Delay in number of seconds between retries to build MATLAB Compiler targets after a license checkout error
has occurred.

-DBASIS_MCC_TIMEOUT:INT
Timeout in seconds for the build of a MATLAB Compiler target. If the build of the target could not be finished
within the specified time, the build is interrupted.

-DBASIS_MEX_FLAGS:STRING
Additional flags for the MEX script separated by spaces.

-DBASIS_MEX_TIMEOUT:INT
Timeout in seconds for the build of MEX-Files.

-DBASIS_REGISTER:BOOL
Whether to register installed package in CMake’s package registry. This option is enabled by default such that
packages are found by CMake when required by other packages based on this build tool.

-DBASIS_SUPERBUILD_MODULES:BOOL
Experimental Enable the superbuild of project modules. For projects with a large number of modules, this can
dramatically reduce the build system configuration time, because the configuration of each module is deferred
until the build step. The superbuild of modules is disabled by default. See Superbuild of Modules for more
information.

-DBASIS_VERBOSE:BOOL
Enable verbose messages during build configuration.

-DBUILD_BASIS_UTILITIES_FOR_<LANG>:BOOL
By default, the BASIS Utilities for a given programming language are only build if any of the project’s exe-
cutable or library targets build from source code in the respective language makes use of these utilities. Use
these options to force the build of the BASIS Utilities for the respective language. Even if not used by the
project itself, the generated utility functions and header or scripted module files can be used by another project
to access the project meta-data such as its name and version by including the respective project-specific BASIS
Utilities.

-DBUILD_CHANGELOG:BOOL
Request build of ChangeLog as part of the ALL target. Note that the ChangeLog is generated either from the
Subversion history if the source tree is a SVN working copy, or from the Git history if it is a Git repository.
Otherwise, the ChangeLog cannot be generated and this option is disabled again by BASIS. In case of Subver-
sion, be aware that the generation of the ChangeLog takes several minutes and may require the input of user
credentials for access to the Subversion repository. It is recommended to leave this option disabled and to build
the changelog target separate from the rest of the software package instead (see Build the Software).

-DBUILD_MODULES_BY_DEFAULT::BOOL
Whether to enable project modules (i.e., subprojects) by default or not. This option has only effect when given
directly on the command-line when calling cmake or ccmake, respectively. Otherwise the default value of this
option will be used for the first build system configuration run which adds the MODULE_* options already and
sets them to the respective default (TRUE). This default value cannot be overriden by consecutive configuration
runs unless the MODULE_* options themselves are changed.

-DITK_DIR:PATH
Path to the directory of your ITK installation, if applicable.

-DMATLAB_DIR:PATH
Path to the directory of your MATLAB installation, if applicable.

19

http://www.mathworks.com/products/compiler/
http://www.mathworks.com/products/compiler/
http://www.mathworks.com/products/compiler/
http://www.mathworks.com/help/techdoc/ref/mex.html
http://www.mathworks.com/help/techdoc/matlab_external/f7667.html
http://www.cmake.org/Wiki/index.php?title=CMake/Tutorials/Package_Registry
http://subversion.apache.org/
http://git-scm.com/

-DSPHINX_DIR:PATH
Path to the directory of your Sphinx installation, if applicable.

3.4 Configure a Project

This guide demonstrates some of the more advanced details, tricks, and tools to modify and configure your project.

See also:

The guide on how to Create/Modify a Project and the Project Template which defines the typical project layout.

Build Configuration

BasisProject.cmake

The key file for any project is the BasisProject.cmake file which can be found in the root directory of each project or
module if the project is a subproject of another. It sets basic information about a project such as its name, version,
and dependencies. Therefore it calls the basis_project() command which provides several parameters for setting these
project attributes.

Dependencies Dependencies specified as arguments of the basis_project() command also support more advanced
selection of specific version and package components. If some components of an external package are optional while
others are required, multiple dependency declarations to the same package can be used which will only differ in the
list of package components.

The syntax for specifying dependencies is:

basis_project(
[...]
DEPENDS
<package_name>[-<version>][{<componen1>,<component2>,...}]

[...]
)

Note: The components can be separated by whitespace characters such as spaces, tabs, and newlines. In this case,
the dependency declaration has to be enclosed in double quotes such that it is treated by CMake as a single argument
of the basis_project command.

In the example below, ITK-4{IOKernel} therefore is a dependency on the external ITK package, in particular
version 4 or above and only the IOKernel component is required. You can also be more specific regarding the
version using a dependency declaration such as ITK-4.2 or ITK-3.18.0. Whether or not an external dependency
meets the version requirements is determined by CMake’s find_package command. See the CMake documentation of
this command for more details, where the VERSION and COMPONENTS options directly relate to the respective parts
of the BASIS dependency declaration.

basis_project(
[...]
DEPENDS
ITK-4{IOKernel}

OPTIONAL_DEPENDS
PythonInterp
JythonInterp
Perl

20

https://cmake-basis.github.io/apidoc/latest/BasisProject_8cmake.html
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6
http://www.cmake.org/cmake/help/v2.8.12/cmake.html#command:find_package

MATLAB{matlab}
BASH
Doxygen
Sphinx{build}
#<optional-dependency>

TEST_DEPENDS
#<test-dependency>

OPTIONAL_TEST_DEPENDS
MATLAB{mex}
MATLAB{mcc}
#<optional-test-dependency>

[...]
)

Note that in case of a modularized project, the top-level project cannot have one of its own modules as dependency.
The modules themselves, however, can and usually will depend on other modules of the same top-level project. If
the module should also be able to exist as a standalone project or as part of other top-level projects, the dependency
declaration should refer to another module as PackageName{OtherModule} instead of just OtherModule,
where PackageName is the name of the top-level project which provides the other module, i.e., which defines the
root namespace that the modules belong to.

Settings.cmake

Besides the BasisProject.cmake file, the config/Settings.cmake file contains the second most impor-
tant project build configuration settings of a BASIS project. It is not required, but will be present in many projects. It
is included by the root CMakeLists.txt of a typical BASIS project after the project meta-data is defined, infor-
mation about the project modules has been collected, and the default BASIS settings were set. It is used by projects to
override these default settings and to add additional project specific CMake options to the cache, e.g., using CMake’s
option command. Another use case of this file is to set global project build settings such as common include directories
or library paths which have not automatically been set by BASIS. In particular if an external dependency’s CMake
configuration or FindPackage.cmake module set some non-standard CMake variables, a project can make use of
these in the config/Settings.cmake file. An example of such settings are compiler and linker flags. If you
want to add certain compiler flags or override the defaults, then do so in the config/Settings.cmake file. It
should be noted that some BASIS settings cannot be overridden using this file if the BASIS standard does not allow
so. But most settings can be overridden using this file.

For example if you want to enable all compiler warnings for your project and consider them moreover as errors, you
would add the following to the config/Settings.cmake file:

if(CMAKE_COMPILER_IS_GNU_CXX)
add_definitions(-Wall -Werror)

endif()

Depends.cmake

This build configuration file is for advanced use only in cases where the generic resolution of external dependencies
used by BASIS fails due to an incompatible external package. In other words, if you need to call basis_find_package()
or even CMake’s find_package directly to find a particular external dependency, add the needed commands to the
Depends.cmake file. One use case would be if a package or the corresponding FindPackage.cmake module,
respectively, requires certain CMake variables to be set prior to the find_package call. In such case, set these
variables in config/Depends.cmake and specify the dependency as usual in the BasisProject.cmake
file. If this approach is still not feasible for the particular package, add any code needed to find the dependency
to config/Depends.cmake and remove the dependency declaration from BasisProject.cmake such that
BASIS is not itself attempting to resolve the dependency automatically. This should only be needed and used in rare

21

http://www.cmake.org/cmake/help/v2.8.12/cmake.html#command:option
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gac9a1326ff8b06b17aebbb6b852ca73af
http://www.cmake.org/cmake/help/v2.8.12/cmake.html#command:find_package
https://cmake-basis.github.io/apidoc/latest/Depends_8cmake.html

cases where the external dependency is not following the usual CMake guidelines. Often such situation is better re-
solved by providing a suitable FindPackage.cmake module for the external dependency. This module can then
be added to BASIS, or put in the config/ directory of the project. If you have a CMake module to contribute to
BASIS, we encourage you to open an issue with a patch attached or to send a pull request on GitHub.

Config.cmake.in

The Config.cmake.in file is the template for the so-called CMake package configuration file which is generated
by BASIS at the end of the build system configuration. The generated file will be named PackageConfig.cmake,
where Package is the name of the top-level project, and contain information about the installation, the exported
library targets, and possibly compiler options that were used to build the project. CMake’s find_package com-
mand searches for this file when looking for the package named Package and includes it to import the build
and installation settings. Besides the typical attributes of the build and installation which are written automati-
cally by BASIS to the PackageConfig.cmake file, additional custom project settings can be added using the
config/Config.cmake.in file, along with a file named config/ConfigSettings.cmake which sets the
CMake variables that are used in the Config.cmake.in template.

Version.cmake.in

This file is the template for the PackageConfigVersion.cmake file which is examined by CMake’s
find_package command in order to determine whether the found package with the package configuration in
PackageConfig.cmake meets the requested version requirements. The default file written by BASIS contains the
following CMake code which is suitable for most projects. Otherwise, add a custom config/Version.cmake.in
template file to your project and it will be used instead.

Package version as specified in BasisProject.cmake file
set (PACKAGE_VERSION "@PROJECT_VERSION@")

Perform compatibility check here using the input CMake variables.
See example in http://www.cmake.org/Wiki/CMake_2.6_Notes.
set (PACKAGE_VERSION_COMPATIBLE TRUE)
set (PACKAGE_VERSION_UNSUITABLE FALSE)

if ("${PACKAGE_FIND_VERSION_MAJOR}" EQUAL "@PROJECT_VERSION_MAJOR@")
if ("${PACKAGE_FIND_VERSION_MINOR}" EQUAL "@PROJECT_VERSION_MINOR@")
set (PACKAGE_VERSION_EXACT TRUE)

endif ()
endif ()

ScriptConfig.cmake.in

The so-called script configuration file sets CMake variables which can be used in scripted executables or libraries (i.e.,
modules). The respective build targets are added via basis_add_executable or basis_add_library. See
the Build of Script Targets standard for details, in particular the section about the Script Configuration.

Package.cmake and Components.cmake

The configuration of CPack for the generation of installers or other distribution packages, such as source code or
binary packages, is done by the BasisPack.cmake module. This module includes the config/Package.cmake
file after the CPack variables have been set to the BASIS defaults if it exists.

22

https://github.com/cmake-basis/BASIS/issues
https://github.com/cmake-basis/BASIS
http://www.cmake.org/cmake/help/v2.8.12/cmake.html#command:find_package
http://www.cmake.org/cmake/help/v2.8.12/cmake.html#command:find_package
http://www.cmake.org/cmake/help/v2.8.12/cpack.html
https://cmake-basis.github.io/apidoc/latest/BasisPack_8cmake.html
http://www.cmake.org/cmake/help/v2.8.12/cpack.html#section_VariablescommontoallCPackgenerators

The default configuration is derived from the project information as specified in the BasisProject.cmake file.
As the config/Package.cmake file is included before the CPack module, it can be used to override the default
CPack configuration. For example, additional exclude patterns can be added to CPACK_SOURCE_IGNORE_FILES
to exclude additional files from the source code distribution package. Another example would be to change the type
of installers that should be generated by CPack by selecting the preferred CPack generators. The default generator
chosen by BASIS is the TGZ generator.

To define any package components for installers which support the installation of selected components, you can use the
basis_add_component(), basis_add_component_group(), basis_add_install_type(), and basis_configure_downloads()
commands. The respective CPack commands used by these basis_ counterparts are defined by the CPack.cmake
module which is included, however, after the config/Package.cmake file as required by CPack. Therefore,
the BasisPack module considers another project configuration file named config/Components.cmake. This
optional file should contain any custom installation component definitions using aforementioned basis_add_ com-
mands.

See also:

cpack_add_component, cpack_add_component_group, cpack_add_install_type, cpack_configure_downloads

Header Files

Public Interface

Header files are considered part of the public interface of a project, if they are placed in any of the directories specified
using the INCLUDE_DIRS parameter of the basis_project() command, which by default is the include directory of
the project source tree. Using the recommended project layout, public header files have to be put in

• Top Level Project: include/<package>/

• Project Module : <module>/include/<package>/

• Subproject : <subproject>/include/<package>/<subproject>/

Notice the subdirectories inside the include directory that help prevent the collision of header file names across pack-
ages and subprojects. Here, <package> is usually the name of the top-level project which in case of a module or
subproject is the argument of the PACKAGE_NAME (or short PACKAGE) parameter of basis_project().

Note: In most cases, the package name of the module is identical to the project/package name of the top-level project.
Such module is considered an internal module of the top-level project.

In cases where the module is imported from another package, using for example a submodule feature of the used
version control system, the module is considered external to the importing top-level project, unless the package name
of the module corresponds to the (package) name of the top-level project. Even though the source tree of the top-
level project includes the module source tree directly, external modules should still be considered part of an external
package, i.e., the one named by the PACKAGE_NAME of the respective module.

Note that a top-level project whose name is specified as PACKAGE_NAME of a module does not have to exist. The
package name serves rather as namespace for the module. All symbols of a software project belong to this (package)
namespace. It should be emphasized that the concept of a namespace can be extended to all aspects of a software
project, not only symbols of programming languages which have it built in such as C++. Therefore, the symbols
which belong to the package namespace include project modules, target names, C++ classes and functions, as well as
scripted libraries.

23

http://www.cmake.org/cmake/help/v2.8.12/cpack.html#section_Generators
http://www.cmake.org/cmake/help/v2.8.12/cpack.html#gen:TGZ
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gaced9a5e1170a437f4cb9dfe3290eec30
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga1cdc08431ecf20ec14574274d720f6cc
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gaeeb3f3537fee2c9758a0ca061010a9f3
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga49e6cfe6432bc2ce57095f1bdf82a815
http://www.cmake.org/cmake/help/v2.8.12/cpack.html#command:cpack_add_component
http://www.cmake.org/cmake/help/v2.8.12/cpack.html#command:cpack_add_component_group
http://www.cmake.org/cmake/help/v2.8.12/cpack.html#command:cpack_add_install_type
http://www.cmake.org/cmake/help/v2.8.12/cpack.html#command:cpack_configure_downloads
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6

Private Interface

Header files which are located in a source code directory can be included in a source file without the need for a
subdirectory structure such as the one used for public header files. These files are not automatically installed as they
are assumed to be only used by .cpp modules which are eventually linked to an executable binary.

Private header files are generally located next to the .cpp files that include them. They can be included using paths
relative to the location of the .cpp module using the #include "header.h" preprocessor directive. Alterna-
tively, private header files can be included relative to a directory which is listed in the search path for header files using
the syntax #include <header.h> which is also used for public header files.

Note: Header files which are included by other public header files or contain public definitions of object classes that
are linked to a library for use by other projects, are by definition part of the public interface and therefore must be
located in one of the include directories.

Search Path

All directories which are given as arguments of either the INCLUDE_DIRS or the CODE_DIRS parameter
of basis_project() are automatically added to the include search path using the BEFORE option of CMake’s
include_directories command to ensure that the header files of the current project are preferred by the pre-
processor.

Additional include paths can be added using the basis_include_directories() command. This can be done either in
the CMakeLists.txt of the respective source code subtree or in the config/Settings.cmake file (recom-
mended).

Custom Layout

Note: Using a custom project layout is not recommended.

The BASIS layout has been battle tested and is based on standards. It is both reusable and cross-platform with a
design that prevents subtle incompatibilities and assumptions that we have encountered with other layouts. Through
experience and standardization we settled on the recommended layout which we believe should be effective for most
use cases.

Nonetheless, we understand that requirements and existing code cannot always accomodate the standard layout, so it
is possible to customize the layout. Therefore, the basis_project() command provides several options to change the
default directories and add additional custom include and source code directories to be considered by BASIS during
the build system configuration.

For example, a project may contain source code of a common static library in the Common subdirectory, image
processing related library code in ImageProcessing, and implementations of executables in Tools, while
the documentation is located in the subdirectory named Documentation and any CMake BASIS configura-
tion files in Configuration. The BasisProject.cmake file of this project could contain the following
basis_project() call:

basis_project(
NAME CustomLayoutProject
DESCRIPTION "A project which demonstrates the use of a custom source tree layout."
CONFIG_DIR Configuration
DOC_DIR Documentation
INCLUDE_DIRS Common ImageProcessing

24

https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gaca67363ae5fdb53a2160d74585e2d257
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6

CODE_DIRS Common ImageProcessing Tools
)

Another example for customization is given below for a top-level project which contains different subprojects named
ModulaA, ModuleB, and ModuleC. By default, BASIS would look for these modules in the modules directory.
This can be changed using either of the following basis_project commands, where in the first case it is assumed
that all modules are located in a common subdirectory named Components:

basis_project(
NAME TopLevelProjectWithCustomModulesDirectory
DESCRIPTION "A project which demonstrates the use of a custom modules directory."
MODULES_DIR Components

)

basis_project(
NAME TopLevelProjectWithCustomModuleDirectories
DESCRIPTION "A project which demonstrates the use of custom module directories."
MODULE_DIRS ModuleA ModuleB ModuleC

)

Superbuild

CMake’s ExternalProject module is sometimes used to create a superbuild, where external components are compiled
separately.

This has already been done with several projects. A superbuild can also take care of building BASIS itself if it is not
installed on the system, as well as any other external library that is specified as dependency of the project.

The default project template of BASIS implements a superbuild of BASIS itself. This process is referred to as Boot-
strapping BASIS and detailed below. A superbuild of other dependencies requires a custom superbuild script. A
possible implementation of such superbuild is summarized below as well, including a working example.

Be aware, however, that there are also a number of details that become more difficult when making sure your superbuild
is cross platform between operating systems and supports all of the generators and IDEs supported by CMake, such as
Eclipse, Xcode, and Visual Studio, because the commands you select may only account for the platform you are using
with the side effect of breaking others.

Bootstrapping BASIS

The bootstrapping of BASIS is implemented by the default basis template since version 1.1, which is included
in BASIS since version 3.1. It is the recommended superbuild approach to automate the build of BASIS. Because
BASIS is downloaded and build right away during the build system configuration, no separate ExternalProject target
is required for BASIS.

The basis project template includes a BasisBootstrapping.cmake module which is included by the root CMakeLists.txt
file. This module contains the definition of the basis_bootstrap() function which downloads, configures, and builds
BASIS during the configuration of the project. It is called by the default root CMake configuration only if no BASIS
installation was found on the system.

The basis_bootstrap() function accepts arguments which define the configuration for the bootstrapped BASIS build.
This BASIS configuration should be such that all features of BASIS that are required to build the software project
are enabled (incl. any required documentation generation support). Unused BASIS features should be disabled to not
waste time for the configuration and build of these features. The resulting BASIS build will be tailored towards the
needs of the project and should further only be used by this project. Users who wish a single BASIS installation for
multiple packages should download and install BASIS manually.

25

http://www.cmake.org/cmake/help/v2.8.12/cmake.html#module:ExternalProject
http://www.cmake.org/cmake/help/v2.8.12/cmake.html#module:ExternalProject
https://cmake-basis.github.io/apidoc/latest/BasisBootstrapping_8cmake.html
https://cmake-basis.github.io/apidoc/latest/BasisBootstrapping_8cmake.html#a1f34dd89a36448adbe1cb991db18c45b
https://cmake-basis.github.io/apidoc/latest/BasisBootstrapping_8cmake.html#a1f34dd89a36448adbe1cb991db18c45b

Note: The basis_bootstrap() function will only build BASIS in the build tree of the project and use this build directly
without installation. An installation of BASIS is required, however, if any of the project’s executable or library targets
make use of the BASIS Utilities. In this case, the BASIS_INSTALL_PREFIX must be set by the user to specify
an installation prefix for the bootstrapped BASIS installation. This installation prefix should be either set to the
CMAKE_INSTALL_PREFIX or a subdirectory within it as this installation should only be used by the software it was
built for.

The following excerpt from the root CMakeLists.txt of the basis project template demonstrates the use of ba-
sis_bootstrap():

look for an existing CMake BASIS installation and use it if found
find_package (BASIS QUIET)

if (NOT BASIS_FOUND)

otherwise download and build BASIS in build tree of project
basis_bootstrap(
VERSION 3.1.0 # CMake BASIS version to download
USE_MATLAB FALSE # Enable/disable Matlab support
USE_PythonInterp FALSE # Enable/disable Python support
USE_JythonInterp FALSE # Enable/disable Jython support
USE_Perl FALSE # Enable/disalbe Perl support
USE_BASH FALSE # Enable/disable Bash support
USE_Doxygen TRUE # Enable/disable documentation generation using Doxygen
USE_Sphinx TRUE # Enable/disable documentation generation using Sphinx
USE_ITK FALSE # Enable/disable image processing regression testing
INFORM_USER # Inform user during first configure step

that BASIS needs to be bootstrapped or installed manually
)

look for local installation
find_package (BASIS QUIET)
if (NOT BASIS_FOUND)
message (FATAL_ERROR "Automatic CMake BASIS setup failed! Please install BASIS manually.")

endif ()
endif ()

The INFORM_USER option causes basis_bootstrap() to display an error message during the very first configure step
of CMake to inform the user that the CMake BASIS package is required to configure and build the software. It further
gives users a chance to edit the BASIS_DIR path in the CMake GUI to use an existing BASIS installation.

Attention: Do not set the BASIS_INSTALL_PREFIX automatically in the root CMakeLists.txt of
your project, unless the INFORM_USER option of basis_bootstrap is used. Any change of the
BASIS_INSTALL_PREFIX will install BASIS in the new location during the next configure run. The user
would then possibly end up with (multiple) obsolete BASIS installations. The INFORM_USER option gives users
at least a chance to edit the BASIS_INSTALL_PREFIX. They must do so, however, before another configure run
to avoid multiple installations.

Superbuild of other Dependencies

After the bootstrapping of BASIS, other dependencies can be build using separate external projects for each of the
dependencies and one final external project which builds the software itself. This last external project will depend on
all the other external projects.

26

https://cmake-basis.github.io/apidoc/latest/BasisBootstrapping_8cmake.html#a1f34dd89a36448adbe1cb991db18c45b
https://cmake-basis.github.io/apidoc/latest/BasisBootstrapping_8cmake.html#a1f34dd89a36448adbe1cb991db18c45b
https://cmake-basis.github.io/apidoc/latest/BasisBootstrapping_8cmake.html#a1f34dd89a36448adbe1cb991db18c45b
https://cmake-basis.github.io/apidoc/latest/BasisBootstrapping_8cmake.html#a1f34dd89a36448adbe1cb991db18c45b

Please see the nested superbuild script of DRAMMS for reference on how to use the ExternalProject module of CMake
to implement a superbuild. As BASIS will be bootstrapped and available already when the external projects of the
dependencies are added, no nested superbuild is required in this case. Thus, skip the first section of the example
superbuild script (the one which adds the external project basis) and set BUNDLE_EXTERNAL_PROJECTS to
OFF. In fact, we suggest to only copy those lines from the nested superbuild example script, which are relevant for the
non-nested superbuild. The CMake code required for this will be less complex and contain considerably fewer lines
of code.

Note: One goal of future BASIS releases will be to automate this proecess such that most common dependencies
declared in the BasisProject.cmake file are automatically downloaded and build if no existing installation was
found and the superbuild is enabled for this dependency. Additonal custom superbuild scripts for individual external
packages would enable the superbuild of non-standard packages which are not yet supported by BASIS out-of-the-box
as well.

Nested Superbuild of BASIS and other Dependencies

The second alternative uses CMake’s ExternalProject module and a nested super-build approach. This approach has
been applied first for the superbuild of the DRAMMS software package with an older version of BASIS. If no BASIS
installation is found, an external project for BASIS is added, which downloads and installs BASIS. A second external
project, named bundle is used to build all the other dependencies, including the software project itself. This second
external project recursively uses the same CMake configuration file, but this time with a valid BASIS_DIR. It adds
for each package to be build after BASIS an external project. Note that these external projects are build targets of the
bundle target which itself is an external project. Therefore this approach is referred to as nested superbuild. All build
configurations of the various packages which are build by the superbuild have to be specified in the CMakeLists.txt
which implements this superbuild. Any options and variables which a user should be able to modify must be passed
to the respective ExternalProject_Add command in this script.

See also:

Copy of the nested superbuild script of DRAMMS.

Test Configuration

CDash

BASIS supports the tools CTest/CDash which are related to CMake and provide continuous integration testing.

See also:

CDash Integration for more detailed information.

Code Coverage

The test results such as the summary files generated by gcov are uploaded by CTest to a CDash server which can
visualize them. The analysis of the gcov (or Bullseye) output and its conversion to the XML format used by CDash
is done by the ctest_coverage CTest command. The information needed by CTest for the upload is read from a
configuration file named CTestConfig.cmake which must be located in the top-level directory of the project. To
get a visual report without a CDash server, the command-line tool lcov can be used to transform the gcov output into
an HTML page.

The relevant compiler options when using the GNU Compiler Collection (GCC) are added by the
basistest.ctest script when the coverage option is passed in, i.e.,

27

http://www.cmake.org/cmake/help/v2.8.12/cmake.html#module:ExternalProject
http://www.cmake.org/cmake/help/v2.8.12/cmake.html#module:ExternalProject
http://www.cbica.upenn.edu/sbia/software/dramms/download.html
https://cmake-basis.github.io/howto/nested-superbuild.html
http://cmake.org/cmake/help/v2.8.12/ctest.html
http://www.cdash.org/
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://cmake.org/cmake/help/v2.8.12/ctest.html
http://www.cdash.org/
http://cmake.org/cmake/help/v2.8.12/ctest.html#command:ctest_coverage
http://ltp.sourceforge.net/coverage/lcov.php

ctest -S basistest.ctest,coverage

See also:

• Introduction to CTest

• How to use gcov and lcov

Installation

Prefix

The CMAKE_INSTALL_PREFIX is initialized by BASIS based on the platform which the build is configured on and
the package vendor ID, i.e., the argument of the PACKAGE_VENDOR (short VENDOR) parameter of basis_project().
This package vendor ID is usually set to a combination of package provider and division or an acronym which the
respective division is known by.

This default installation prefix can be overriden by the project in the config/Settings.cmake file. It can also
be modified at any time from the command line, i.e.,

cmake -DCMAKE_INSTALL_PREFIX:PATH=/path/to/installation /path/to/code

RPATH

By default, BASIS sets the INSTALL_RPATH property of executables and shared libraries based on the dependencies
of the target. For each shared library which the binary is linked to and belongs to the same project (or package
bundle), a path relative to the location of the binary is added to the RPATH of the installed binary. To figure out all the
dependencies of a build target, BASIS has to perform a depth search on the dependency graph which is rather costly.
Therefore, this feature can be disabled if desired either for performance reasons or because it is preferred that CMake
sets the RPATH. There are two CMake variables which decide whether the RPATH is set by BASIS. The first is the
advanced option -DBASIS_INSTALL_RPATH which can be set during the configuration of the build system to OFF
(or better before, i.e., on the command-line to avoid the unnecessarily longer configuration time). If the feature should
always be disabled, add the following line to the config/Settings.cmake file of the project.

set (CMAKE_SKIP_RPATH TRUE)

Redistributable Files

In general, try to keep redistributable sources and binaries as small as possible.

3.5 Managing Test Data

Note: This how-to guide has to be written yet.

This document describes how example and test data can be stored outside the source tree.

See also:

http://www.cmake.org/Wiki/ITK/Git/Develop/Data#ExternalData

See also:

http://vtk.org/Wiki/ITK_Release_4/Testing_Data

28

http://www.vtk.org/Wiki/CMake/Testing_With_CTest
http://qiaomuf.wordpress.com/2011/05/26/use-gcov-and-lcov-to-know-your-test-coverage/
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6
http://www.cmake.org/Wiki/ITK/Git/Develop/Data#ExternalData
http://vtk.org/Wiki/ITK_Release_4/Testing_Data

3.6 Documenting Software

Note: This how-to guide is yet not complete.

BASIS supports two well-known and established documentation generation tools: Doxygen and Sphinx.

Documentation Quick Start

When you use the basisproject tool to generate a project as described in Create/Modify a Project, you will have
a tree with a /doc directory preconfigured to generate a starter documentation website and PDF just like the BASIS
website.

Here is how to create a new project that supports documentation:

basisproject --name docProject --description "This is a BASIS project." --full

We will assume that you ran this command in your ~/ directory for simplicity in the steps below.

Writing Documentation

Now you can simply open the ~/docProject/doc/*.rst files and start editing the existing reStructuredText
files to create your Sphinx documentation.

You can also update your doxygen mainpage by opening ~/docProject/doc/apidoc/apidoc.dox.

We also suggest taking a look at the /doc folder of the BASIS source code itself for more examples of how to write
documentation.

Generating Documentation

Once you have the project ready the docs can be generated.

mkdir ~/docProject-build
cd ~/docProject-build
cmake ../docProject -DBUILD_DOCUMENTATION=ON -DCMAKE_INSTALL_PREFIX=~/docProject-install
make doc
make install

The web documentation will be in ~/docProject-install/doc/html/index.html, and the PDF docs will
be in ~/docProject-install/doc/docProject_Software_Manual.pdf.

Serving Website Locally

Note that simply opening the documentation will not render all pages correctly due to the use of the iframe HTML tag
to embed the Doxygen generated API docs and the security settings built into modern browsers. Instead, display your
docs via a server, for example, using Python by running the following command in the root directory of the (installed)
documentation.

Python 2:

python -m SimpleHTTPServer

Python 3:

29

http://www.doxygen.org/
http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://www.stack.nl/~dimitri/doxygen/manual/commands.html#cmdmainpage

python -m http.server

Then go to localhost:8000 to view the pages.

Doxygen Documentation

Language Support

Since version 1.8.0, Doxygen can natively generate documentation from

• C/C++

• Java

• Python

• Tcl

• Fortran.

The markup language used to format documentation comments was originally a set of commands inherited from
Javadoc. Recently Doxygen also adopted Markdown and elements from Markdown Extra.

Doxygen Filters

To extend the reportoire of programming languages processed by Doxygen, so-called custom Doxygen filters can be
provided which transform any source code into the syntax of one of the languages well understood by Doxygen. The
target language used is commonly C/C++ as this is the language best understood by Doxygen.

BASIS includes Doxygen filters for:

• CMake

• Bash

• Perl

• MATLAB

• Python

Generating Doxygen

The basis_add_doxygen_doc() CMake command can be used to create your own custom doxygen documentation.

Sphinx Documentation

BASIS makes use of Sphinx for the alternative documentation generation from Python source code and corresponding
doc strings. The markup language used by Sphinx is reStructuredText (reST).

Sphinx Documentation has the advantages of being able to be produced in many different formats, and it can be used
inline in Python code, and producing documentation in a much more usable layout. However, it cannot generate
documentaiton from inline code for C++ in the way that doxygen can.

30

http://localhost:8000
http://www.doxygen.org/
http://daringfireball.net/projects/markdown/
http://michelf.ca/projects/php-markdown/extra/
https://cmake-basis.github.io/apidoc/latest/DocTools_8cmake.html#a6a37a66eb28f7969ef27b004f8faaa3a
http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html

Output Formats

Sphinx and restructured text allow documentation to be generated in a wide number of useful formats, including:

• HTML

• LaTeX

• man pages

• Docutils

These can be used to produce:

• software manual

• developer’s guide

• tutorial slides,

• project web site

This is accomplished by providing text files marked up using reST which are then processed by Sphinx to generate
documentation in the desired output format.

BASIS includes two Sphinx extensions breathe and doxylink which are included with BASIS can be used to include,
respectively, link to the the documentation generated by Doxygen from the documentation generated by Sphinx. The
latter only for the HTML output, which, however, is the most commonly used and preferred output format. Given that
the project web site and manuals are generated by Sphinx and only the more advanced reference documentation is
generated by Doxygen, this one directional linking of documentation pages is sufficient for most use cases. Currently
BASIS uses doxylink because it is able to work with more complete and better organized output than breathe can
handle as of the time of writing.

Themes

A number of Sphinx themes are provided with BASIS, and the recommended default theme is readable-wide that is
used by the BASIS website.

• readable-wide

• readable

• agogo

• default

• haiku

• pyramid

• sphinxdoc

• basic

• epub

• nature

• readable

• scrolls

• traditional

31

https://github.com/michaeljones/breathe
http://packages.python.org/sphinxcontrib-doxylink/

You can also use your own theme from the web or include it yourself by simply providing a path to the theme using
the HTML_THEME parameter of basis_add_doc() and basis_add_sphinx_doc().

Markdown

Markdown, GitHub flavored Markdown and Markdown Extra can be used for the root package documentation files
such as the AUTHORS.md, README.md, INSTALL.md, and COPYING.md files. Many online hosting platforms
for the distribution of open source software such as SourceForge and GitHub render markdown on the project page
with the marked up formatting.

Note: Not all of these documentation tools are supported for all languages.

Creating Documentation

The best example for creating documenation is the BASIS documentation itself, which can be found in the
doc/apidoc folder. The most important function for generating documentation is basis_add_doc(), which can
handle the parameters of the related basis_add_sphinx_doc() and basis_add_doxygen_doc() commands.

Software Manual

Introduces users to software tools and guides them through example application.

Developer’s Guide

Describes implementation details.

API Documentation

Documentation generated from source code and in-source comments, integrated with default template.

Software Web Site

A web site can be created using the documentation generation tool Sphinx. The main input to this tool are text
files written in the lightweight markup language reStructuredText. A default theme for use at SBIA has been cre-
ated which is part of BASIS. This theme together with the text files that define the content and structure of the
site, the HTML pages of the software web site can be generated by sphinx-build. The CMake function ba-
sis_add_doc() provides an easy way to add such web site target to the build configuration. For example, the template
doc/CMakeLists.txt file contains the following section:

--
web site (optional)
if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/site/index.rst")

basis_add_doc (
site
GENERATOR Sphinx
BUILDER html dirhtml pdf man
MAN_SECTION 7
HTML_THEME readable-wide
HTML_SIDEBARS globaltoc

32

https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga06f94c5d122393ad4e371f73a0803cfa
https://cmake-basis.github.io/apidoc/latest/DocTools_8cmake.html#a628468ae6c7b29570a73a2d63eebf257
http://daringfireball.net/projects/markdown/
https://help.github.com/articles/github-flavored-markdown
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga06f94c5d122393ad4e371f73a0803cfa
https://cmake-basis.github.io/apidoc/latest/DocTools_8cmake.html#a628468ae6c7b29570a73a2d63eebf257
https://cmake-basis.github.io/apidoc/latest/DocTools_8cmake.html#a6a37a66eb28f7969ef27b004f8faaa3a
http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga06f94c5d122393ad4e371f73a0803cfa
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga06f94c5d122393ad4e371f73a0803cfa

RELLINKS installation documentation publications people
COPYRIGHT "<year> University of Pennsylvania"
AUTHOR "<author>"

)
endif ()

where <year> and <author> should be replaced by the proper values. This is usually done by the basisproject
command-line tool upon creation of a new project.

This CMake code adds a build target named site which invokes sphinx-build with the proper default con-
figuration to generate a web site from the reST source files with file name extension .rst found in the site/
subdirectory. The source file of the main page, the so-called master document, of the web site must be named
index.rst. The main pages which are linked in the top navigation bar are named using the RELLINKS option
of basis_add_sphinx_doc(), the CMake function which implements the addition of a Sphinx documentation target.
The corresponding source files must be named after these links. For example, given above CMake code, the reStruc-
turedText source of the page with the download instructions has to be saved in the file site/download.rst.

See the corresponding section of the ../install guide for details on how to generate the HTML pages from the reST
source files given the specification of a Sphinx documentation build target such as the site target defined by above
template CMake code.

3.7 Branch and Release

This guide defines the process of creating a new development branch other than the trunk and the creation of a release
version of a software. Before reading this document, you should be familiar with the basic structure of any revision
controlled software project as described in the Filesystem Layout.

Branching and Merging

See the Filesystem Layout for details.

For SVN please also read the corresponding SVN Book article.

Releasing Software

Whenever the software of a project is to be used by another project or user, the following steps have to be performed
in order to create a new release version of the software.

1. If the development was carried out in a branch other than the trunk, the changes which shall be part of the release
version have to be merged back to the trunk. Therefore, use the svn merge command as described in the SVN
Book.

2. Then the trunk is copied to a branch which is used to apply release specific adjustments such as setting the
version number or to apply bug fixes to this particular release version. Therefore, name this branch “<project>-
<major>.<minor>” (note that the patch number is excluded!) to indicate that this branch represents the “<ma-
jor>.<minor>” series of software releases.

See Branching and Merging for details on how to create a new branch.

3. Edit the BasisProject.cmake file of the new release branch and change the VERSION argument to the proper
version as described below.

The version number consists of three components: the major version number, the minor version number, and
the patch number. The format of the version number is “<major>.<minor>.<patch>”, where the minor version
number and patch number default to 0 if not given. Only digits are allowed except of the two separating dots.

33

https://cmake-basis.github.io/apidoc/latest/DocTools_8cmake.html#a628468ae6c7b29570a73a2d63eebf257
http://svnbook.red-bean.com/en/1.5/svn.branchmerge.basicmerging.html
http://svnbook.red-bean.com/en/1.5/svn.branchmerge.basicmerging.html
http://svnbook.red-bean.com/en/1.5/svn.branchmerge.basicmerging.html

For release candidates which are made available for review, on the other side, instead of the patch number,
prepend “rc<N>” to the release version, where N is the number of the release candidate. For example, the first
release candidate of the first stable release will have the version number “1.0.0rc1”, the second release candidate
which is tagged after bug fixes have been applied, will have the version “1.0.0rc2”, etc. Once the 1.0 version
was reviewed and is ready for final release, change the version to “1.0.0”. From now on, the patch number will
be increased by one for each consecutive maintenance release of the 1.0 version.

• Beta releases have the major version number 0. The first stable release the major version number 1, the
second major stable release the number 2, etc.

• A change of the major version number indicates changes of the software API (and often ABI) and/or its
behavior and/or the change or addition of major features.

• A change of the minor version number indicates changes that are not only bug fixes and no major changes.
Hence, changes of the API, but not ABI.

• A change of the patch number indicates changes only related to bug fixes which did not change the software
API nor ABI. It is the least important component of the version number.

4. After setting the version number, tag the release branch as “<project>-<version>”, i.e., copy the branch
“branches/<project>-<major>.<minor>” to “tags/<project>-<version>”.

5. Now select the reviewers and ask them to retrieve a copy of the tagged release candidate. According to the
reviewers feedback, the release branch is bug fixed and a new release candidate is tagged (after increasing the N
in “<major>.<minor>rc<N>”) and made available for the next review iteration.

6. The prvieous step is iterated until the release candidate passed all reviews. Once this is the case, set the version
to “<major>.<minor>.0” and create a corresonding tag.

7. Optionally, binary and source distribution packages are generated from the tagged release branch and uploaded
to the public domain. See the Packaging Software guide for details on how to create such distribution packages.

8. Inform the users that a new release is available and update any internal and external documentation related to
the software package.

9. Finally, make sure that all bug fixes which were applied to the release branch are merged back to the trunk where
the development continues. Do not implement new features in the created release branch. This branch will only
be used for maintenance of the “<major>.<minor>” series of the software.

Note: The trunk is not associated with a version other than the revision number as it is always in development.
Therefore, the trunk always uses the invalid version 0.0.0.

Do not forget to commit all changes to the release branch, not the trunk. In particular the adjustment of the version
number shall not be applied to the trunk as it will always keep the invalid version 0.0.0.

3.8 Packaging Software

This document describes the packaging of BASIS projects.

Distribution of Sources

A source package for distribution which only includes basic tests and selected modules can be generated using CPack.
In particular, the build target package_source is used to generate a .tar.gz file with the source files of the
distribution package. This package will include all source files except those which match one of the patterns in the
CPACK_SOURCE_IGNORE_FILES CMake list which is set to common default patterns in the BasisPack.cmake
module. Additional exclude patterns for a particular package shall be added to the Settings.cmake file of the

34

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_binary_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_binary_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_binary_interface
http://www.cmake.org/cmake/help/cpack-2-8-docs.html
https://cmake-basis.github.io/apidoc/latest/BasisPack_8cmake.html

project. Moreover, if the project contains different modules, only the enabled modules are included. For general steps
on how to configure a build tree, see the common build instructions. Given a configured build tree with a generated
Makefile, run the following command to generate the source distribution package:

make package_source

3.9 Install any Software

The following contains general build and installation instructions which apply to any project which is developed using
CMake BASIS.

Build Steps Overview

See Prerequisites below for information on dependencies.

Build Steps

The common steps to build, test, and install software from source code based on CMake are as follows:

1. Extract source files.

2. Create build directory and change to it.

3. Run CMake to configure the build tree.

4. Build the software using selected build tool.

5. Test the built software.

6. Install the built files.

On Unix-like systems with GNU Make as build tool, these build steps can be summarized by the following sequence
of commands executed in a shell, where $package and $version are shell variables which represent the name of this
package and the obtained version of the software.

$ tar xzf $package-$version-source.tar.gz
$ mkdir $package-$version-build
$ cd $package-$version-build
$ ccmake ../$package-$version-source

• Press ‘c’ to configure the build system and ‘e’ to ignore warnings.

• Set CMAKE_INSTALL_PREFIX and other CMake variables and options.

• Continue pressing ‘c’ until the option ‘g’ is available.

• Then press ‘g’ to generate the configuration files for GNU Make.

$ make
$ make test (optional)
$ make install (optional)

An exhaustive list of minimum build dependencies, including the build tools along detailed step-by-step build, test,
and installation instructions can be found in the corresponding “Building from Sources” section of the BASIS how-to
guide on software installation [2].

Please refer to the rest of this guide first if you are uncertain about above steps or have problems to build, test, or
install the software on your system. If this guide does not help you resolve the issue, please contact the provider of the
respective software package. In case of failing tests, please attach the output of the following command to your email:

35

$ ctest -V >& test.log

Prerequisites

The following software packages are prerequisites for any software that is based on BASIS. Note that the stated
package versions are usually the minimum versions for which it is known that the software is working with. Newer
versions will usually be fine as well if not otherwise stated by the particular software documentation, but less certainly
older versions.

See the installation instructions of the specific software package for details on what is required and which optional
software is being used if available. For instructions on how to build or install any of the following software packages,
please refer to the documentation of the respective package.

Required Packages

Package Version Description
CMake 2.8.4 A cross-platform, open-source build tool used to generate platform

specific build configurations. It configures the system for the various
build tools which perform the actual build of the software.
If your operating system such as certain Linux distribution does not in-
clude a pre-build binary package of the required version yet, download
a more recent CMake version from the CMake download page and
build and install it from sources. Often this is easiest accomplished by
using the CMake version provided by the Linux distribution in order
to configure the build system for the more recent CMake version. To
avoid conflict with native CMake installation, it is recommended to
install your own build of CMake in a different directory.

BASIS The CMake Build system And Software Implementation Standard
(BASIS) among other features defines the project directory structure
and provides CMake implementations to ease and standardize the
packaging, build, testing, and installation. Refer to the INSTALL doc-
ument of the software package you want to build for information on
which particular BASIS version is required by this package.

GNU Make, ninja, etc. All build tools supported by the CMake generator
GNU Compiler Collec-
tion, Clang, etc.

A C++ compiler is required to compile the BASIS source code.

36

http://www.cmake.org/
http://www.cmake.org/cmake/resources/software.html
http://www.gnu.org/software/make/
http://martine.github.io/ninja/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://clang.llvm.org/

Optional Packages

Package Version Description
Doxygen 1.8.0 This tools is required for the generation of the API documentation

from in-source comments in C++, CMake, Bash, Python, and Perl.
Note that only since version 1.8.0, Python and the use of Markdown
(Extra) are support by Doxygen.

Python 2.7 Python is used by the basisproject tool that generates template
projects. Python is also generally supported for the implementation
of tools and libraries following the BASIS standard.

Sphinx 1.1.3 This tool can be used for the generation of the documentation from
in-source Python comments and in particular from reStructuredText.

LaTeX The LaTeX tools may be required for the generation of the software
manuals. Usually these are, however, already included in PDF in
which case a LaTeX installation is only needed if you want to regen-
erate these from the LaTeX sources (if available after all).

MATLAB R2009b The MATLAB tools such as, in particular, the MEX script are used to
build MEX-Files from C++ source code. A MEX-File is a loadable
module for MATLAB which implements a single function. If the soft-
ware package you are building does not define any MEX build target,
MATLAB might not be required.

MATLAB Compiler R2009b The MATLAB Compiler (MCC) is required for the build of stand-
alone executables and shared libraries from MATLAB source files. If
the software package you are building does not include any MATLAB
sources (.m files), you do not need the MATLAB Compiler to build it.

Build and Installation

These are the build, test, and installation steps common to any BASIS based software, including BASIS itself. See
BasisInstallationSteps for installation instructions specific to the CMake BASIS package itself.

If you obtained a binary distribution package for a supported platform, please follow the installation instructions
corresponding to your operating system. The build step can be omitted in this case.

Note: The commands given in this guide have to be entered in a terminal, in particular, the Bourne Again Shell (Bash).
If you are not using the Bash, see the documentation of your particular shell for information on how to perform these
actions using this shell instead.

Package Names

The file names of the distribution packages follow the convention <package>-<version>-<arch><ext>,
where <package> is the name of the package in lowercase letters, and <version> is the package version in the
format <major>.<minor>.<patch>. The <arch> file name part specifies the operating system and hardware
architecture, i.e.,

37

http://www.stack.nl/~dimitri/doxygen/
http://www.python.org/
http://sphinx.pooco.org/
http://docutils.sourceforge.net/rst.html
http://www.latex-project.org/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/help/techdoc/ref/mex.html
http://www.mathworks.com/help/techdoc/matlab_external/f7667.html
http://www.mathworks.com/products/compiler/
http://www.mathworks.com/products/matlab/
http://www.gnu.org/software/bash/

<arch> Description
linux-x86 Linux, 32-bit
linux-x86_64 Linux, 64-bit
darwin-i386 Darwin x86 Intel
darwin-ppc Darwin Power PC
win32 Windows, 32-bit
win64 Windows, 64-bit
source Source files

The file name extension <ext> is .tar.gz for a compressed tarball, .deb for a Debian package, and .rpm for a
RPM package.

Binary Distribution Package

Debian Package This package can be installed on Debian and its derivatives such as Ubuntu using the Advanced
Package Tool (APT):

sudo apt-get install <package>-<version>-<arch>.deb

RPM Package This package can be installed on Red Hat Enterprise Linux and its derivatives such as CentOS and
openSUSE using the Yellowdog Updater, Modified (YUM):

sudo yum install <package>-<version>-<arch>.rpm

Mac OS Bundles for Mac OS might be available for some software packages, but this is not supported by default.
Please refer to the INSTALL file which is located in the top directory of the respective software package.

Windows Currently, Microsoft Windows has limited support as an operating system. The most tested platform
is the Linux platform CentOS, in particular, and most software packages are therefore dependent on a Unix-based
operating system. Thus, building and executing SBIA software under Windows will most likely require an installation
of Cygwin and the build of the software from sources as described below. Some packages, on the other side, can be
build on Windows as well, using, for example, Microsoft Visual Studio as build tool. The Visual Studio project files
have to be generated using CMake (see Building From Sources).

As an alternative, consider the use of a Live Linux Distribution, a dual boot installation of Linux or an installation of a
Linux operating system in a virtual machine using virtualization tools such as VirtualBox or proprietary virtualization
solutions available for your host operating system.

Building From Sources

In the following, we assume you obtained a copy of the source package as compressed tarball (.tar.gz). The name
and version part of the package file is referred to as Bash variable:

package=<package>-<version>

Extract sources At first, extract the downloaded source package, e.g.:

tar -xzf $package-source.tar.gz ~

This will extract the sources to a new diretory in your home directory named “<package>-<version>-source”.

38

http://www.debian.org/
http://www.ubuntu.com/
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool
http://www.redhat.com/products/enterprise-linux/
http://www.centos.org/
http://www.opensuse.org/en/
http://en.wikipedia.org/wiki/Yellowdog_Updater,_Modified
http://www.apple.com/macosx/
http://windows.microsoft.com/en-US/windows/home
http://www.centos.org/
http://www.cygwin.com/
http://www.microsoft.com/visualstudio/en-us
http://www.virtualbox.org
http://www.gnu.org/software/bash/

Configure Create a directory for the build tree of the package and change to it, e.g.:

mkdir ~/$package-build
cd ~/$package-build

Note: An in-source build, i.e., building the software within the source tree is not supported to force a clear separation
of source and build tree.

To configure the build tree, run CMake’s graphical tool ccmake:

ccmake ~/$package-source

Press c to trigger the configuration step of CMake. Warnings can be ignored by pressing e. Once all CMake variables
are configured properly, which might require the repeated execution of CMake’s configure step, press g. This will
generate the configuration files for the selected build tool (i.e., GNU Make Makefiles in our case) and exit CMake.

Variables which specify the location of other required or optionally used packages if available are named
<Package>_DIR. These variables usually have to be set to the directory which contains a file named
<Package>Config.cmake or <package>-config.cmake. Alternatively, or if the package does not provide
such CMake package configuration file, the installation prefix, i.e., root directory should be specified. See the build
instructions of the particular software package you are building for more details on the particular <Package>_DIR
variables that may have to be set if the packages were not found automatically by CMake.

See the documentation of the available CMake Options for more options that can be used to configure the build of any
project developed with BASIS. Please refer also to the package specific build instructions given in the INSTALL file
or software manual of the corresponding package for information on available additional project specific configuration
options.

Note: The ccmake tool also provides a brief description to each variable in the status bar.

Build the Software To build the executables and libraries, run GNU Make in the root directory of the configured
build tree:

make

In order to build the documentation, the -DBUILD_DOCUMENTATION option has to be set to ON. If not set before,
this option can be enabled using the command:

cmake -D BUILD_DOCUMENTATION:BOOL=ON ~/$package-build

Note that the build of the documentation may require the build of the software beforehand. If the software was not
build before, the build of the documentation will also trigger the build of the software.

Each software package provides different documentation. In general, however, each software has a manual, which by
default is being build by the manual target if the software manual is not already included as PDF document. In the
latter case, the manual does not have to be build. Instead, the PDF file will simply be copied (and renamed) during
the installation. Otherwise, in order to build the manual from source files such as reStructuredText or LaTeX, run the
command:

make manual

If the software provides a software library for use in your own code, the API documentation may be useful which can
be build using the apidoc target:

39

http://www.cmake.org/cmake/help/runningcmake.html
http://www.cmake.org/cmake/help/runningcmake.html
http://docutils.sourceforge.net/rst.html
http://www.latex-project.org/

make apidoc

The advanced -DBASIS_INSTALL_APIDOC_DIR configuration option can be set to an absolute path or a path
relative to the -DCMAKE_INSTALL_PREFIX directory in order to modify the installation directory for the API
documentation which is generated from the in-source comments using tools such as Doxygen and Sphinx. This can
be useful, for example, to install the documentation in the document directory of a web server.

Some software packages further generate a project web site from text files marked up using a lightweight markup
language such as reStructuredText. This web site can be build using the site target:

make site

This will generate the HTML pages and corresponding static files of the web site in doc/site/html/. If you
prefer a single directory per document which results in prettier URLs without the .html extension, run the following
command instead:

make site_dirhtml

The resulting web site can then be found in doc/site/dirhtml/. Optionally, the advanced
-DBASIS_INSTALL_SITE_DIR configuration option can be set to an absolute path or a path relative to the
-DCMAKE_INSTALL_PREFIX directory in order to modify the installation directory for the generated web site.
This can be useful, for example, to install the web site in the document directory of a web server.

For maintainers of the software, a developer’s guide may be provided which would then be build by the guide target
if not included as PDF document:

make guide

If the source tree is a Subversion working copy and you have access to the Subversion repository of the project or if
the project source tree is a Git repository, a ChangeLog file can be generated from the commit history by building the
changelog target:

make changelog

In case of Subversion, be aware that the generation of the ChangeLog takes several minutes and may require the input
of your user credentials for access to the Subversion repository. Moreover, if the command svn2cl is installed on your
system, it will be used to format the ChangeLog prettier. Otherwise, the plain output of the svn log command is
written to the ChangeLog file.

Note: Not all of the above build targets are provided by each software package. You can see a list of available
build targets by running make help. All available documentation targets, except the ChangeLog, can be build by
executing the command make doc.

Test the Software In order to run the software tests, execute the command:

make test

For more verbose test output, which in particularly is of importance when submitting an issue report, run CTest directly
with the -V option instead:

ctest -V >& $package-test.log

and attach the file $package-test.log to the issue report.

40

http://www.stack.nl/~dimitri/doxygen/
http://sphinx.pooco.org/
http://docutils.sourceforge.net/rst.html
http://subversion.apache.org/
http://git-scm.com/
http://arthurdejong.org/svn2cl
http://www.cmake.org/cmake/help/v2.8.8/ctest.html

Note: If the software package does not include tests, follow the steps in the software manual to test the software
manually with the provided example dataset.

Install the Software First, make sure that the CMake configuration options -DCMAKE_INSTALL_PREFIX ,
-DBASIS_INSTALL_SCHEME, and -DBASIS_INSTALL_SITE_PACKAGES are set properly, where for normal
use cases only -DCMAKE_INSTALL_PREFIX may be modified. These variables can be set as follows:

cmake -D "CMAKE_INSTALL_PREFIX:PATH=<prefix>" ~/$package-build

or:

cmake -D "CMAKE_INSTALL_PREFIX:PATH=<prefix>" \
-D "BASIS_INSTALL_SCHEME:STRING=default|usr|opt|win" \
-D "BASIS_INSTALL_SITE:BOOL=ON|OFF" \
~/$package-build

This can be omitted if these variables were set already during the configuration of the build tree
or if the default values should be used. On Linux, -DCMAKE_INSTALL_PREFIX is by de-
fault set to /opt/<provider>/<package>[-<version>] and on Windows to C:/Program
Files/<Provider>/<Package>[-<version>].

The advanced -DBASIS_INSTALL_SCHEME option specifies how to install the files relative to this installation
prefix. If it is set to default (the default), BASIS will decide the appropriate directory structure based on the
set installation prefix. On Unix, if the installation prefix contains the package name, the opt installation scheme is
selected which skips the addition of subdirectories named after the package within the different installation subdirec-
tories. This corresponds to the suggested Linux Filesystem Hierarchy for Add-on Packages , where the installation
prefix is set to /opt/<package> or /opt/<provider>/<package>. Otherwise, the usr installation scheme
is chosen which will append the package name to each installation directory to avoid conflicts between software
packages installed in the same location. This installation scheme follows the Linux Filesystem Hierarchy Standard
for /usr. Given the installation prefix /usr/local, for example, the package library files will be installed into
/usr/local/lib/<package>. On Windows, the win scheme is used which does not add any package spe-
cific subdirectories to the installation path similar to the opt scheme. Furthermore, the directory names are more
Windows-like and start with a capital letter. For example, the default installation directory for package library files
on Windows given the installation prefix C:\Program Files\<Provider>\<Package> is C:\Program
Files\<Provider>\<Package>\Lib.

If the -DBASIS_INSTALL_SITE_PACKAGES option is ON, module libraries written in a scripting language such
as Python or Perl are installed to the system-wide default directories for site packages of these languages. As this
requires write permission to these directories, this option is disabled by default.

Note: The binary executables which are intended to be called by the user are copied to the bin/ directory, where no
package subdirectory is created regardless of the installation scheme. It is in the responsibility of the package provider
to choose names of the executables that are unique enough to avoid conflicts with other available software packages.
Auxiliary executables, on the other side, i.e., executables which are called by the executables in the bin/ directory,
are installed in the directory for library files.

The executables and auxiliary files can be installed using either the command:

make install

or:

make install/strip

41

http://www.pathname.com/fhs/pub/fhs-2.3.html#OPTADDONAPPLICATIONSOFTWAREPACKAGES
http://www.pathname.com/fhs/pub/fhs-2.3.html#THEUSRHIERARCHY
http://www.pathname.com/fhs/pub/fhs-2.3.html#THEUSRHIERARCHY

in the top directory of the build tree. The available install targets copy the files intended for installation to the directories
specified during the configuration step. The install/strip target additionally strips installed binary executable
and shared object files, which can save disk space.

If more than one version of a software package shall be installed, include the package version in the installation
prefix by setting -DCMAKE_INSTALL_PREFIX to /opt/[<provider>/]/<package>[-<version>], for
example (the default). Otherwise, you may choose to install the package in /usr/local, which will by default make
the executables in the bin/ directory and the header files available to other packages without the need to change any
environment settings.

Besides the installation of the built files of the software package to the named locations, the directory where the
CMake configuration file of the package was installed is added to CMake’s package registry if the advanced option
-DBASIS_REGISTER is set to ON (the default). This helps CMake to find the installed package when used by
another software package based on CMake.

After the successful installation, the build tree can be deleted. It should be verified before, however, that the installation
indeed was successful.

Set up the Environment
PATH
In order to ease the execution of the main executable files, we suggest to add the path <prefix>/bin/ to the search
path for executable files, i.e., the PATH environment variable. This is, however, generally not required. It only eases
the execution of the command-line tools provided by the software package.

For example, if you use Bash add the following line to the ~/.bashrc file:

export PATH="<prefix>/bin:${PATH}"

PYTHONPATH

To be able to use any provided Python modules of the software package in your own Python scripts, you need to add
the path <prefix>/lib/[<package>/]python<version>/ to the search path for Python modules if such
path exists after installation:

export PYTHONPATH=${PYTHONPATH}:/opt/<provider>/<package>-<version>/lib/python2.7

or, alternatively, insert the following code at the top of your Python scripts:

#! /usr/bin/env python
import sys
sys.path.append('/opt/<provider>/<package>-<version>/lib/python2.7')
from package import module

PERL5LIB

To be able to use the provided Perl modules of the software package in your own Perl scripts, you need to add the path
<prefix>/perl5/ to the search path for Perl modules if such path exists after installation:

export PERL5LIB=${PERL5LIB}:/opt/<provider>/<package>-<version>/lib/perl5

or, alternatively, insert the following code at the top of your Perl scripts:

use lib '/opt/<provider>/<package>-<version>/lib/perl5';
use Package::Module;

42

http://www.cmake.org/Wiki/index.php?title=CMake/Tutorials/Package_Registry
http://www.gnu.org/software/bash/

Deinstallation

Makefile-based Uninstall

In order to undo the installation of the package files built from the sources, run the following command in the root
directory of the build tree which was used to install the package:

cd ~/$package-build
make uninstall

Warning: This command will only delete all files which were installed during the last build of the install target
(make install).

Uninstaller Script

During the installation, a manifest of all installed files and a CMake script which reads in this list in order to remove
these files again is generated and installed in <prefix>/lib/cmake/<package>/.

The uninstaller is located in <prefix>/bin/ and named uninstall-<package>. In order to remove all files
installed by this package as well as the empty directories left behind inside the installation root directory given by
<prefix>, run the command:

uninstall-$package

assuming that you added <prefix>/bin/ to your PATH environment variable.

Note: The advantage of the uninstaller is, that the build tree is no longer required in order to uninstall the software
package. Thus, you do not need to keep a copy of the build tree once you installed the software only to be able to
uninstall the package again.

3.10 Automated Testing

This how-to guide describes the implementation and configuration of automated tests of software implemented on
top of BASIS. Note that this guide is mainly of interest for software maintainers who have permissions to change the
configuration of the software testing process and system administrators. Other lab members and software developers
generally do not need to bother with these details. Note, however, that the automated tests can generally also be setup
on any machine outside the lab. But in order for CTest to be able to submit test results to the CDash server, a VPN
connection to the University of Pennsylvania Health System (UPHS) network is required.

Note: This how-to guide details the automated software testing at SBIA and is therefore specific to the lab’s computing
environment.

The basistest family of scripts

The BASIS package comes with a family of scripts whose name starts with the prefix basistest. All these scripts
respond to the usual command-line options such as --help and --version to provide detailed information regard-
ing usage and version. Further, a wrapper script named basistest is available which understands the subcommands
cron, master, slave (the default), and svn.

43

http://www.cmake.org/cmake/help/v2.8.8/ctest.html

• basistest-cron: The command executed by the scheduled cron job.

• basistest-master: The master script which runs the scheduled tests.

• basistest-slave: The test execution command which is executed by the master script for each test job.

• basistest-svn: The wrapper for the svn command which can be run non-interactively.

basistest-cron

This command is run by a cron job. The configuration of the test execution command is coded into this script,
optionally including the submission command used to submit test jobs to the batch-queuing system such as the Oracle
Grid Engine, formerly known as Sun Grid Engine (SGE), in particular. Moreover, the location of the test configuration
file and test schedule file, both used by the basistest-master script, are specified here. Another reason for
implementing this script is the setup of the environment for the execution of the master script because cron jobs are
run with a minimal configuration of environment variables. Therefore, the basistest-cron script sources the
~swtest/.bashrc file of the swtest user which is used at our lab for the automated software testing in order
to, for example, add the ~swtest/bin/ directory where all the basistest scripts are installed to the PATH
environment variable.

basistest-master

This so-called master script is executed by the basistest-cron command. On each run, it reads in the configu-
ration file given by the --config option line-by-line. Each line in the configuration file specifies one test job to be
executed. The format of the configuration file is detailed here. Comments within the configuration file start with a
pound (#) character at the beginning of each line.

For each test of a specific branch of a project, the configuration file contains a line following the format:

<m> <h> <d> <project> <branch> <model> <options>

where:

<m> Interval in minutes between consecutive test runs.
Defaults to "0" if "*" is given.

<h> Interval in hours between consecutive test runs.
Defaults to "0" if "*" is given.

<d> Interval in days (i.e., multiples of 24 hours) between consecutive
test runs. Defaults to "0" if "*" is given.

<project> Name of the BASIS project.
<branch> Branch within the project's SVN repository, e.g., "tags/1.0.0".

Defaults to "trunk" if a "*" is given.
<model> Dashboard model, i.e., either one of "Nightly", "Continuous",

and "Experimental". Defaults to "Nightly".
<options> Additional options to the CTest script.

The "basisctest" script of BASIS is used by default.
Run "ctest -S <path>/basistest.ctest,help" to get a list of
available options. By default, the default options of the
CTest script are used. Note that this option can in particular
be used to define CMake variables for the build configuration.

Note that either <m>, <h>, or <d> needs to be a positive number such that the interval is valid. Otherwise, the master
script will report a configuration error and skip the test.

Note: Neither of these entries may contain any whitespace character!

44

http://svnbook.red-bean.com/en/1.7/svn.ref.svn.html
http://en.wikipedia.org/wiki/Oracle_Grid_Engine
http://en.wikipedia.org/wiki/Oracle_Grid_Engine

For example, nightly tests of the main development branch (trunk) of the project BASIS itself which are run once
every day including coverage analysis are scheduled by:

* * 1 BASIS trunk Nightly coverage,memcheck

Besides the configuration file, which has to be edited manually, a test schedule file is maintained by the testing master.
For each configured test job, the master consults the current schedule to see whether the test is already due for execution
given the testing interval specified in the configuration file and the last time the test was executed. If the test is due for
execution, the testing command, i.e., by default the basistest-slave, is executed and the test schedule updated by the
testing master. Otherwise, the execution of the test is skipped.

basistest-slave

This script wraps the execution of the CTest script used for the automated testing of BASIS projects including the
submission of the test results to the sbiaCDash server. It mainly converts the command-line arguments to the correct
command-line for the invocation of the CTest script.

The basistest.ctest script performs the actual testing of a BASIS project, i.e., the

• initial check out of the sources from the Subversion controlled repository,

• update of an existing working copy,

• build of the test executables,

• execution of the tests,

• optional coverage analysis,

• optional memory checks,

• submission of test results to the CDash server.

Run the following command in a shell to have the CTest script print its help to screen and exit. However, the
basistest-slave script should be used instead of executing this CTest script directly. The help displayed by
this command can be used in order to determine which additional options are available (such as coverage and
memcheck).

ctest -S basistest.ctest,help

basistest-svn

This script simply wraps the execution of the svn command as the svnuser user as this allows for non-interactive
check outs and updates of working copies without the need to provide a user name and password. The code of the
script is at the moment the single line:

exec sudo -u svnuser /bin/sh /sbia/home/svn/bin/svnwrap "$@"

Note: There is another wrapper script named svnwrap owned by the svnuser involved which does the actual
invocation of the svn command.

CDash Integration

The first step for CDash integration is to set up a CDash server by following the instructions provided in the CDash
documentation.

45

https://sbia-portal.uphs.upenn.edu/cdash
https://cmake-basis.github.io/apidoc/latest/basistest_8ctest.html
http://svnbook.red-bean.com/en/1.7/svn.ref.svn.html
http://www.cdash.org/

Then you need to create a project on the CDash site of your server through the Admin interface.

Finally, you can configure CTest through the CTestConfig.cmake file which must be in a project’s top-level directory
to specify the URL of the CDash server as well as the project to submit test results to.

Running tests via ctest (not make test) will then try to submit the results to the CDash server.

Administration of Software Testing

The following describes the setup and configuration of the automated software tests at SBIA. Hence, these instructions
are only of interest for the administrators of the automated software testing at our lab. Other users do not have the
permission to become the swtest user. To become the swtest user execute:

sudo -u swtest sudosh

Note: If you want to start with a clean setup, keep in mind that the directories ~swtest/etc/ and ~swtest/var/
contain files which are not part of the BASIS project. These need to be preserved and backed up separately.

Initial BASIS Installation

The testing scripts described above are part of the BASIS project. As long as this project is not installed system-wide,
it has to be installed locally for use by the swtest user. Executing the following commands as this testing user will
install BASIS locally in its home directory.

1. Check-out the BASIS sources into the directory ~swtest/src/:

cd
svn --username <your own username> co "https://sbia-svn/projects/BASIS/trunk" src

2. Create a directory for the build tree and configure it such that BASIS will be installed in the home directory of the
swtest‘ user:

mkdir build
cd build
ccmake -DINSTALL_PREFIX:PATH=~ -DINSTALL_SINFIX:BOOL=OFF \

-DINSTALL_LINKS:BOOL=OFF \
-DBUILD_DOCUMENTATION:BOOL=OFF \
-DBUILD_EXAMPLE:BOOL=OFF \
-DBUILD_TESTING:BOOL=OFF \
../src

3. Build and install BASIS with ~swtest as installation prefix:

make install

The testing scripts described above are then installed in the directory ~swtest/bin/ and the CTest script is located
in ~swtest/share/cmake/.

Updating the BASIS Installation

In order to update the testing scripts, run the following commands as the swtest user on olympus (this is important
because the cron job which executes the tests will run on olympus).

46

cd
svn up src
cmake build
make -C build install
make clean

This updates the working copy of the BASIS sources in ~swtest/src/ and builds the project in the build tree
~swtest/build/. Finally, the updated BASIS project is installed. Note that the explicit execution of CMake
might be redundant. However, some modifications may not re-trigger a configuration even though it is required. Thus,
it is better to run CMake manually before the make. The final make clean is optional. It is done in order to remove
the temporary object and binary files from the build tree and thus reduce the disk space occupied.

Configuring Test Jobs

Setting up the Test Environment All tests are executed by the swtest user. Therefore, the common test environ-
ment can be set up in the ~swtest/.bashrc file. Here, the environment modules which are required by all tests
should be loaded. Moreover, a particular project can depend on another project and should always be build using the
most recent version of that other project. Every BASIS project, in particular, depends on BASIS. Thus, after each
successful test of a project which is required by other projects, the files of this project are installed locally in the
home directory of the swtest user. By setting the <Pkg>_DIR environment variable, CMake will use this reference
installation if available. Otherwise, it will keep looking in the default system locations.

For an example on how the test environment can be set up, have a look at the following example lines of the
~swtest/.bashrc:

BASIS is required by all tested projects
module load basis
ITK 3.* is required by BASIS (for the test driver), HardiTk, GLISTR
module unload itk
module load itk/3.20
Boost (>= 1.45) is required by HardiTk
module load boost
TRILINOS is required by HardiTk
module load trilinos

root directory for installation of project files after successful test execution
#
Note: When logged in on olympus, we usually want to configure
the setup of the test environment such as updating the BASIS
installation used by the automated testing infrastructure itself.
In this case, we actually want to install the files in ~swtest/
and not in the DESTDIR set here.
if ! [[`hostname` =~ "olympus"]]; then

export DESTDIR="${HOME}/comp_space/destdir"
fi

Set <Project>_DIR environment variables such that the most recent
installations in DESTDIR are used. If a particular installation is
not available yet, the default installation as loaded by the module
commands above will be used instead.
export BASIS_DIR="${DESTDIR}/usr/local/lib/cmake/basis"

Note: The environment set up this way is common for the build of all tested projects. Hence, all projects which
use ITK will use ITK version 3.20 in this example. If certain projects would require a different ITK version, the
environment for these test jobs would need to be adjusted before the execution of ctest. This is currently not further

47

http://modules.sourceforge.net/

supported by BASIS, but is an open feature to be implemented.

Adding Test Job to basistest Configuration The automated tests of BASIS projects are configured in the test
configuration file of the basistest-master script. The format of this configuration file is detailed here. Where this file
is located and how it is named is configured in the basistest-cron script. By default, the basistest-master script
looks for the file /etc/basistest.conf, but the current installation is setup such that the configuration is located
in ~swtest/etc/. The current test schedule file which is maintained and updated by the basistest-master script
is at the moment saved as ~swtest/var/run/basistest.schedule. The log files of the test executions are
saved in the directory ~swtest/var/log/. Note that these paths are configured in the basistest-cron script. Old
log files are deleted by the basistest-cron script after each execution of the test master.

An example test jobs configuration file is given below:

MM HH DD Project Name Branch Dashboard Arguments
(e.g., build configuration)

Note: The destination directory for installations is specified by the DESTDIR
environment variable as set in the ~swtest/.bashrc file as well as the
default CMAKE_INSTALL_PREFIX.

0 1 0 BASIS trunk Continuous
0 0 1 BASIS trunk Nightly doxygen,coverage,memcheck,install

0 6 0 DRAMMS trunk Continuous
0 0 1 DRAMMS trunk Nightly doxygen,coverage,memcheck,install

0 0 1 GLISTR trunk Continuous include=sbia
0 0 7 GLISTR trunk Nightly doxygen,memcheck,coverage,install
0 0 61 GLISTR trunk Nightly exclude=sbia # non-parallel

0 1 0 HardiTk trunk Continuous BUILD_ALL_MODULES=ON
0 0 1 HardiTk trunk Nightly install,BUILD_ALL_MODULES=ON

0 0 1 MICO trunk Continuous
0 0 7 MICO trunk Nightly doxygen,memcheck,coverage,install

Adjustment of Test Schedule The current implementation of the basistest-master script does not allow to specify
specific times at which a test job is to be executed. It only allows for the specification of the interval between test
executions. Hence, if the test master script is executed the first time with a job that should be executed every day,
the job will be executed immediately and then every 24 hours later. For nightly tests, it is however often desired to
actually run these tests after midnight (more specifically after the nightly start time configured in CDash such that the
test results are submitted to the dashboard of the current day). To adjust the time when a test job is executed, one
has to edit the test schedule file (i.e., ~swtest/var/run/basistest.schedule) manually. This file lists in
the first two columns the date and time after when the next execution of the test job corresponding to the particular
row should be run. Note that the actual execution time depends on when the basistest-cron script is executed. So for
the example of nightly test jobs, the time in the second column for this test job should be changed to “3:30:00” for
example. Choosing a time after midnight will show the nightly test results on the dashboard page of CDash for the
“following” work day. The nightly test of BASIS itself which is used by the other projects should be executed first
such that the updated BASIS installation is already used by the other tests.

Note: As the test schedule file is generated by the basistest-master script, run either this script or the basistest-cron
script with the --dry option if this file is missing or was not generated yet. This will skip the immediate execution
of all tests, but only create the test schedule file which then can be edited manually to adjust the times.

48

The following is an example of such test schedule file:

2012-01-11 13:55:04 BASIS trunk Continuous
2012-01-11 13:55:05 HardiTk trunk Continuous BUILD_ALL_MODULES=ON
2012-01-11 18:55:04 DRAMMS trunk Continuous
2012-01-12 03:00:00 BASIS trunk Nightly doxygen,coverage,memcheck,install
2012-01-12 02:00:00 DRAMMS trunk Nightly doxygen,coverage,memcheck,install
2012-01-12 12:55:04 GLISTR trunk Continuous include=sbia
2012-01-12 02:00:00 HardiTk trunk Nightly install,BUILD_ALL_MODULES=ON
2012-01-12 12:55:05 MICO trunk Continuous
2012-01-18 03:30:00 GLISTR trunk Nightly doxygen,memcheck,coverage,install
2012-01-18 03:30:00 MICO trunk Nightly doxygen,memcheck,coverage,install
2012-03-12 03:30:00 GLISTR trunk Nightly exclude=sbia

Remember that the test schedule is processed by the basistest-master script on every script invocation. It will output
the scheduled tests in chronic order of their next due date. If a test has been removed from the test configuration file,
it will also no longer show up in the test schedule.

Setting up a Cron Job for Automated Testing Before you schedule a cron job for the automated software testing,
open the basistest-cron script located in the ~swtest/bin/ directory and ensure that the settings are correct.

Then run crontab -e as swtest user on olympus and add an entry such as:

*/5 * * * * /sbia/home/swtest/bin/basistest cron

This will run the basistest-cron script and hence the testing master script every 5 minutes on olympus. Note that the
actual interval for executing the test jobs in particular depends on the test configuration. Hence, even when the cron
job is executed every 5 minutes, the actual tests may only be run once a night, a week, a month,... depending on the
configuration file which is provided for the basistest-master script, no matter if any files were modified or not.

4 Standards

The following sections detail the Build system (i.e., the B in BASIS) and Software Implementation (i.e., the SI in
BASIS) Standard.

4.1 Filesystem Layout

This document describes the filesystem hierarchy of BASIS projects, which is based on the Filesystem Hierarchy
Standard of Linux. It has a goal of supporting:

• Unix and Windows

• Installation of multiple versions of each package on a single system

• Seamless integration of BASIS software packages

• A superproject, or super-build, concept based on a bundle build

Please note that the variable names used below are defined by BASIS using CMake, and will often refer to particular
directories of a software project. These variables should be used where possible, so that directories can be renamed
without breaking the build system.

The Project Template provides a reference implementation of this standard. See the Create/Modify a Project How-to
Guide for details on how to make use of this template to create a new project which conforms with the filesystem
hierarchy standard detailed in this section.

Legend

49

http://adminschoice.com/crontab-quick-reference
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://www.pathname.com/fhs/pub/fhs-2.3.html

• <project> (<package>) is a placeholder for the lowercase project (or package) name

• <Project> is the case-sensitive project name.

• <major> is the major release number

• <minor> is the minor update number

• <patch> is the patch number

• <version> is a placeholder for the project version string <major>.<minor>.<patch>

• <source> is the root directory of a particular project source tree

• <build> is the root directory of the project’s build or binary tree

Source Code Repository

Git

BASIS recommends that Git distributed version control users follow the nvie git-flow branching model. The Atlassian
Gitflow Workflow Tutorial is another excellent source for this information.

Mercurial

BASIS recommends that Mercurial (hg) distributed version control users follow the hg-flow branching model. This
is identical to the git-flow branching model explained in Source Code Repository, but uses mercurial as the version
control system. The hg-flow extension is useful for assisting with development, but not required.

Subversion

Each Subversion (SVN) repository contains the top-level directories trunk/, branches/, and tags/. No other
directories may be located next to these three top-level directories.

The root directory of a development branch, typically the trunk (see Subversion), is denoted by <tag> and considered
relative to the base URL of the project repository. The base URL is referred to as <url>.

50

http://git-scm.com/
http://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/git/workflows#!workflow-gitflow
https://www.atlassian.com/git/workflows#!workflow-gitflow
http://www.mercurial.selenic.com
https://bitbucket.org/yujiewu/hgflow/wiki/Home
http://subversion.apache.org/

Repository Path Description
trunk/ The current development version of the project. Most de-

velopment is done in this master branch.
branches/<name>/ Separate branches named <name> are developed in sub-

directories under the branches directory. One reason for
branching is, for example, to develop new features sepa-
rate from the main development branch, i.e., the trunk, and
merging the desired changes back to the trunk once the new
feature is implemented and tested.

branches/<project>-<major>.<minor>/ This particular branch is used prior to releasing a new ver-
sion of the project. This branch is commonly referred to as
release candidate of version <major>.<minor> of the
project. It is used to adjust the project files prior to tag-
ging a particular release. For example, to set the correct
version number in the project files. This branch is further
be used to apply bug fixes to a previous release of this ver-
sion, in which case the patch number has to be increased
before tagging a new release of this software version. See
the Branch and Release guide for further details.

tags/<project>-<version>/ Tagged release version of the project. The reason for in-
cluding the project name in the name of the tagged branch
is, that SVN uses the last URL part as name for the direc-
tory to which the URL’s content is checked out or exported
to if no name for this directory is specified.

See the Branch and Release guide for details on how to create new branches and the process of releasing a new version
of a software project.

Below the trunk and the release branches a version of the entire source tree should be present. Other branches below
the branches/ directory may contain a subset of the trunk such as the source code of the software without the
examples and tests.

Source Code Tree

The Soruce Code Tree refers to the filesystem directory structure of all source code that is managed by version control.
The build and intallation trees are separate entities created and populated from the source tree, so the source tree is
essentially the “beating heart” of a software project.

Source Categories Source files can fall under the categories of software, build, configuration, documentation, or
testing. Any files essential to the execution of the software are also considered to be part of the software source.
Examples of essential files include a pre-computed lookup table and a medical image atlas.

Documentation Examples within a software project are considered to be part of both documentation and testing.

Testing The testing category can be divided into system testing and unit testing. It is important to note the difference
of system tests and unit tests. As testing can often require a huge amount of image data, these datasets may be stored
and managed outside the source tree. Please refer to the Managing Test Data guide for details on this topic.

• System Tests System tests are usually implemented in a scripting language such as Python, Perl, or BASH.
System tests simply run the built executables with different test input data and compare the output to the expected
results. Therefore, system tests can also be performed on a target system using the installed software where both
the software and system tests are distributed as separate binary distribution packages. Large data sets, such as
medical image data sets in their entirety, should only be required for system tests and downsampled to a very
low resolution for practical reasons whenever possible.

• Unit Tests Unit tests, provide a specialized test of a single software module such as a C++ class or Python
module. Generally, the size and amount of additional data required for unit tests is kept reasonably small. The

51

unit tests are compiled into separate executable files called test drivers. These executable files are not essential
for the functioning of the software and are solely build for the purpose of testing.

Source Code Filesystem Heirarchy The filesystem hierarchy of a software project’s source tree is defined below. The
names of the CMake variables defined by BASIS are on the left, while the actual names of the directories are listed on
the right:

- PROJECT_SOURCE_DIR - <source>/
+ PROJECT_CODE_DIR + src/
+ PROJECT_CONFIG_DIR + config/
+ PROJECT_DATA_DIR + data/
+ PROJECT_DOC_DIR + doc/
+ PROJECT_EXAMPLE_DIR + example/
+ PROJECT_MODULES_DIR + modules/
+ PROJECT_TESTING_DIR + test/
+ PROJECT_SUBDIRS + <multiple additonal subdirs>

Here are CMake variables defined in place of the default name for each of the following directories:

Directory Variable Description
PROJECT_SOURCE_DIR Root directory of source tree.
PROJECT_CODE_DIR All source code files.
PROJECT_CONFIG_DIR BASIS configuration files.
PROJECT_DATA_DIR Software configuration files including auxiliary data such as medical atlases.
PROJECT_DOC_DIR Software documentation.
PROJECT_EXAMPLE_DIR Example application of software.
PROJECT_MODULES_DIR Project Modules, each residing in its own subdirectory.
PROJECT_TESTING_DIR Implementation of tests and test data.
PROJECT_SUBDIRS List of additional directories for source code files.

Build Tree

CMake supports but recommends against in-source builds. Therefore, BASIS requires that the build tree be outside
the source tree. Only the files in the source tree are considered to be important.

Directories in the build tree are separate from the source tree, and they are created and populated when CMake
configuration and the build step are run.

- PROJECT_BINARY_DIR - <build>/
+ RUNTIME_OUTPUT_DIRECTORY + bin/
+ LIBRARY_OUTPUT_DIRECTORY + lib/
+ ARCHIVE_OUTPUT_DIRECTORY + lib/
+ TESTING_RUNTIME_DIR + Testing/bin/
+ TESTING_LIBRARY_DIR + Testing/lib/
+ TESTING_OUTPUT_DIR + Testing/Temporary/

Here are CMake variables defined in place of the default name for each of the following directories:

Directory Variable Description
RUNTIME_OUTPUT_DIRECTORY All executables and shared libraries (Windows).
LIBRARY_OUTPUT_DIRECTORY Shared libraries (Unix).
ARCHIVE_OUTPUT_DIRECTORY Static libraries and import libraries (Windows).
TESTING_RUNTIME_DIR Directory of test executables.
TESTING_LIBRARY_DIR Directory of libraries only used for testing.
TESTING_OUTPUT_DIR Directory used for test results.

52

Installation Tree

Installation Schemes

An installation scheme is a specific installation tree layout that is utilized based on contextual information.

BASIS automatically switches the installation scheme if you change CMAKE_INSTALL_PREFIX from /opt/...
to /usr/... and vice versa.

The following directory structure is used when installing the software package, either by building the install target
with “make install”, extracting a binary distribution package, or running an installer.

Different installation hierarchies are defined in order to account for different installation schemes depending on the
location and target system on which the software is being installed.

The directory structures including the installation is defined in DirectoriesSettings.cmake. The default “/opt” prefix
is hard coded for Unix. On Windows it is “C:/Program Files” or, if the registry value can be read, the corresponding
directory in the installation language of the OS, e.g., “C:/Programme” in German.

BASIS knows about a few “installation schemes”. These distinguish between common filesystem hierarchy standards
such as the one for “/opt” or “/usr” on Unix. The difference is that under “/opt”, packages are installed in their own
respective subdirectories which contain then subdirectories such as “include”, “lib”, “doc”, etc. Under the “/usr”
directory, however, the hierarchy is first divided by “include”, “lib”, “bin”, “doc”, and then by package name.

Possible Schemes

The first installation scheme is referred to as the usr scheme which is in compliance with the Linux Filesystem
Hierarchy Standard for /usr:

- CMAKE_INSTALL_PREFIX - <prefix>/
+ INSTALL_CONFIG_DIR + lib/cmake/<package>/
+ INSTALL_RUNTIME_DIR + bin/
+ INSTALL_LIBEXEC_DIR + lib/<package>/
+ INSTALL_LIBRARY_DIR + lib/<package>/
+ INSTALL_ARCHIVE_DIR + lib/<package>/
+ INSTALL_INCLUDE_DIR + include/<package>/
+ INSTALL_SHARE_DIR + share/

+ INSTALL_DATA_DIR + <package>/data/
+ INSTALL_DOC_DIR + doc/<package>/
+ INSTALL_EXAMPLE_DIR + <package>/example/
+ INSTALL_MAN_DIR + man/
+ INSTALL_INFO_DIR + info/

Another common installation scheme, here referred to as the opt scheme and the default used by BASIS packages,
follows the Linux Filesystem Hierarchy Standard for Add-on Packages:

- CMAKE_INSTALL_PREFIX - <prefix>/
+ INSTALL_CONFIG_DIR + lib/cmake/<package>/
+ INSTALL_RUNTIME_DIR + bin/
+ INSTALL_LIBEXEC_DIR + lib/
+ INSTALL_LIBRARY_DIR + lib/
+ INSTALL_ARCHIVE_DIR + lib/
+ INSTALL_INCLUDE_DIR + include/<package>/
+ INSTALL_SHARE_DIR + share/

+ INSTALL_DATA_DIR + data/
+ INSTALL_DOC_DIR + doc/
+ INSTALL_EXAMPLE_DIR + example/

53

https://cmake-basis.github.io/apidoc/latest/DirectoriesSettings_8cmake.html
http://www.pathname.com/fhs/pub/fhs-2.3.html#THEUSRHIERARCHY
http://www.pathname.com/fhs/pub/fhs-2.3.html#THEUSRHIERARCHY
http://www.pathname.com/fhs/pub/fhs-2.3.html#OPTADDONAPPLICATIONSOFTWAREPACKAGES

+ INSTALL_MAN_DIR + man/
+ INSTALL_INFO_DIR + info/

The installation scheme for Windows is:

- CMAKE_INSTALL_PREFIX - <prefix>/
+ INSTALL_CONFIG_DIR + CMake/
+ INSTALL_RUNTIME_DIR + Bin/
+ INSTALL_LIBEXEC_DIR + Lib/
+ INSTALL_LIBRARY_DIR + Lib/
+ INSTALL_ARCHIVE_DIR + Lib/
+ INSTALL_INCLUDE_DIR + Include/<package>/
+ INSTALL_SHARE_DIR + Share/
+ INSTALL_DATA_DIR + Data/
+ INSTALL_DOC_DIR + Doc/
+ INSTALL_EXAMPLE_DIR + Example/

In order to install different versions of a software, choose an installation prefix that includes the pack-
age name and software version, for example, /opt/<package>-<version> (Unix) or C:/Program
Files/<Package>-<version> (Windows).

Note that the directory for CMake package configuration files is chosen such that CMake finds these files automatically
given that the <prefix> is a system default location or the INSTALL_RUNTIME_DIR is in the PATH environment.

It is important to note that the include directory always contains the package name. This way, project header files must
use an include path that avoids conflicts with other packages that use identical header names. Here is a usage example:

#include <package/header.h>

Thus, the include directory that is added to the search path must be set to the include/ directory, but not the
<package> subdirectory.

Here are CMake variables defined in place of the default name for each of the following directories:

Directory Variable Description
CMAKE_INSTALL_PREFIX Common prefix (<prefix>) of installation directories. Defaults

to /opt/<provider>/<package>-<version> on Unix and
C:/Program Files/<Provider>/<Package>-<version> on
Windows. All other directories are specified relative to this prefix.

INSTALL_CONFIG_DIR CMake package configuration files.
INSTALL_RUNTIME_DIR Main executables and shared libraries on Windows.
INSTALL_LIBEXEC_DIR Utility executables which are called by other executables only.
INSTALL_LIBRARY_DIR Shared libraries on Unix and module libraries.
INSTALL_ARCHIVE_DIR Static and import libraries on Windows.
INSTALL_INCLUDE_DIR Public header files of libraries.
INSTALL_DATA_DIR Auxiliary data files required for the execution of the software.
INSTALL_DOC_DIR Documentation files including the software manual in particular.
INSTALL_EXAMPLE_DIR All data required to follow example as described in manuals.
INSTALL_MAN_DIR Man pages.
INSTALL_MAN_DIR/man1/ Man pages of the executables in INSTALL_RUNTIME_DIR.
INSTALL_MAN_DIR/man3/ Man pages of libraries.
INSTALL_SHARE_DIR Shared package files including required auxiliary data files.

Forcing Schemes

Schemes can be selected using the CMake -DBASIS_INSTALL_SCHEME variable.

54

You can force BASIS to use one specific scheme using BASIS_INSTALL_SCHEME. For example, if you want to
install the software in /usr/<package> using the same hierarchy typically used under “/opt”.

4.2 Project Template

While you can create or use any custom template you like, it is highly recommended that templates follow the BASIS
Standards. In addition to the other standards, for BASIS compliance templates must meet the requirements outlined
below.

See also:

The Using and Customizing Templates How-to explains how to make use of templates.

Benefits

Anyone familar with the standard will be able to quickly navigate the source tree and easily integrate your project into
their own because the setup is designed for consistency and interoperability. The idea is to make projects easier for
developers to create, share, and use.

BASIS Standardized Templates provide and automate the following steps:

• Configuration of the build, testing, installation, and packaging.

• Common directory structure which can be found at Filesystem Layout.

• CMake‘s CMakeLists.txt file setup.

• Basic build flags that are required.

Standard Project Files

File Formats

Standard project files utilize the following formats:

.txt A utf8 plain text file.

.md Markdown

.rst reStructuredText
CMakeLists.txt CMake listfile format.
.cmake CMake listfile format.

Required Project Files

The following files have to be part of any project which follows the Filesystem Layout. This is the minimal set of
project files provided when instantiating a new software project. Besides these files, a project will have either a src/
directory or a modules/ directory, or even both of them. See below for a description of these directories.

README.md

This is the main (root) documentation file.

• Every user is assumed to first read this file, which in turn will refer them to the more extensive
documentation.

• Briefly introduces the software package, including a summary of the package files.

• Refer to the INSTALL.txt and COPYING.txt files for details on the build and installation and software
license, respectively.

55

http://www.cmake.org/
http://daringfireball.net/projects/markdown/
http://docutils.sourceforge.net/rst.html

• Include references to scientific articles related to the software package in this file.

AUTHORS.md Names the authors of the software package and people who dirctly made notable contributions to the
software, even if they did not actually edit any project files. Others who mostly contributed indirectly should be
named in the README.txt file instead. It is not necessary to list author names in each source file, as these are
generally edited by multiple people and updating the authors information within each source file is tedious.

COPYING.txt Contains copyright and license information. If some files of the project were copied from other
sources, the copyright and license information of these files shall be stated here as well. It is important to clearly
state which copyright and license text corresponds to which project files.

INSTALL.md Contains build and installation instructions. As the build of all projects which follow BASIS is very
similar, this file shall only describe additional steps/CMake variables which are not described in the Install any
Software guide.

BasisProject.cmake Sets basic information about a BASIS Project and calls the basis_project() command.

The basic project information, also known as metadata, will typically include:

• the project name and release version

• a brief description which is used for the packaging

• dependencies

Note that additional dependencies may optionally be specified using by the CMake code in the con-
fig/Depends.cmake file. If the project is a module of another project, this file is read by the top-level project
to be able to identify its modules and the dependencies among them.

BasisProject.cmake explains using this file to configure your project.

CMakeLists.txt The root CMake configuration file. Do not edit this file.

Common Project Files

CTestConfig.cmake The CTest configuration file. This file specifies the URL of the CDash dashboard of the project
where test results should be submitted to.

config/:apidoc:‘Settings.cmake‘ This is the main CMake script file used to configure the build system, and BASIS.
Put CMake code required to configure the build system in this file.

You may want to:

• Add common compiler flags

• Add new variable definitions or modifying existing CMake BASIS variables

• Write specialized code required to utilize dependencies

• Make CMake configure_file() calls

Examples:

• Setting the project directory variables. The line set(PROJECT_SUBDIRS random) will cause
BASIS to call basis_add_subdirectory() on <source>/random at the appropriate time during the
execution of BASIS.

• See basis/config/Settings.cmake for more examples.

modules/ This directory contains independent project modules. If the project files are organized into conceptual co-
hesive groups, similar to the modularization goal of the ITK 4, this directory contains these conceptual modules
of the project. The files of each module reside in a subdirectory named after the module. Note that each module
itself is a project derived from this project template.

56

https://cmake-basis.github.io/apidoc/latest/BasisProject_8cmake.html
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6
http://www.cmake.org/cmake/help/v2.8.8/ctest.html
http://www.cdash.org/
https://cmake-basis.github.io/apidoc/latest/ProjectTools_8cmake.html#ad14855b044a3fbe2b8fa930e9e47bfe2

Project Modularization

CMakeLists.txt Build Files

build/CMakeLists.txt CMake configuration file for performing super-build of external library components and re-
quirements by utilizing the CMake ExternalProject_Add() call.

The source packages of the prerequisites are either:

• downloaded during the bundle build

• included with the distribution package.

In the latter case, these source packages should be placed in the build/ directory next to this CMake configu-
ration file.

data/CMakeLists.txt This CMake configuration file can contains code to acquire or simply install every data file and
directory from the source tree into the INSTALL_DATA_DIR directory of the installation tree.

doc/CMakeLists.txt This CMake configuration file adds rules to build the documentation. For example, the in-source
comments using Doxygen or reStructuredText sources using Sphinx. Moreover, for every documentation file,
such as the software manual, the basis_add_doc() command has to be added to this file.

example/CMakeLists.txt This CMake configuration file contains code to install every file and directory from the
source tree into the INSTALL_EXAMPLE_DIR directory of the installation tree. It may be modified to config-
ure and/or build example programs if applicable or required.

src/CMakeLists.txt

This is the CMake file where your primary software packages are built.

• Use the command basis_add_library() to add a shared, static, or module library, which can also be a
module written in a scripting language.

• Use the command basis_add_executable() to add an executable target, which can be either a binary or
a script file.

• All targets can added to the src/CMakeLists.txt file using relative paths.

• If necessary, source code files may be organized in subdirectories of the src/ directory.

• Typically subdirectories aren’t necessary for less than 20 files.

• Separate CMakeLists.txt files can be used for each subdirectory.

test/CMakeLists.txt Tests are added to this build configuration file using the basis_add_test() command. The test
input files are usually put in a subdirectory named test/input/, while the baseline data of the expected test
output is stored inside a subdirectory named test/baseline/. Generally, however, the Filesystem Layout
of BASIS does not dictate how the test sources, input, and baseline data have to be organized inside the test/
directory.

test/internal/CMakeLists.txt Tests for internal use only that require data specific to your work organization. These
files are expected to be excluded from the public source distribution package are configured using this CMake
configuration file.

Reasons for excluding tests from a public distribution include:

• some tests may depend on the internal software environment

• may require a particular machine architecture.

• The size of the downloadable distribution packages my otherwise be excessively large.

57

http://www.stack.nl/~dimitri/doxygen/
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga06f94c5d122393ad4e371f73a0803cfa
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga3a56e2ed99608316be7309fcc090cc66
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gab7b7600c0ab4197db811f810a04670be
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga4f8b3637e8577369144ad177d35446f8

Documenation Files

doc/manual.rst The main page of the software manual.

doc/index.rst The main page of the project web site.

doc/intro.rst Introductory description of the project, will appear at top of website front page and at the beginning of
the manual.

doc/features.rst Page listing project features that will appear after the intro on website front page and at the beginning
of the manual.

Advanced Project Files

The customization of the following files is usually not required, and hence, in most cases, most of these files need not
to be part of a project.

config/ScriptConfig.cmake.in See the documentation on the build of script targets for details on how this script
configuration is used.

config/Components.cmake Contains CMake code to configure the components used by component-based installers.
Currently, component-based installers are not very well supported by BASIS, and hence this file is mostly unused
and is currently subject to change.

config/Config.cmake.in This is the template of the package configuration file. When the project is config-
ured/installed using CMake, a configured version of this file is copied to the build or installation tree, re-
spectively, where the information about the package configuration is substituted as appropriate for the actual
build/installation of the package. For example, the configured file contains the absolute path to the installed pub-
lic header files such that other packages can easily add this path to their include search path. The find_package()
command of CMake will look for this file and automatically import the CMake settings when this software
package was found. For many projects, the default package configuration file of BASIS which is used if this file
is missing in the project’s config/ directory, is sufficient and thus this file is often not required.

config/ConfigSettings.cmake This file sets CMake variables for use in the config/Config.cmake.in file. As the pack-
age configuration for the final installation differs from the one of the build tree, this file has to contain CMake
code to set the variables used in the config/Config.cmake.in file differently depending on whether the variables
are being set for use within the build tree or the installation tree. This file only needs to be present if the project
uses a custom config/Config.cmake.in file, which in turn contains CMake variables whose value differs between
build tree and installation.

config/ConfigUse.cmake.in An optional convenience file for CMake code which uses the variables set by the stan-
dard CMake packageConfig.cmake file. BASIS generates a standard packageConfig.cmake file from con-
fig/Config.cmake.in, which is used by other packages to set all the CMake variables they need to utilize your
package.

Example:

• The package configuration sets a variable to a list of include directories have to be added to the
include search path. ConfigUse.cmake.in would then contain CMake instructions to actually add
these directories to the path.

config/ConfigVersion.cmake.in This file accompanies the package configuration file generated from the con-
fig/Config.cmake.in file. It is used by CMake’s find_package() command to identify versions of this software
package which are compatible with the version requested by the dependent project. This file needs almost never
be customized by a project and thus should generally not be included in a project’s source tree.

config/Depends.cmake If the generic code used by BASIS to resolve the dependencies on external packages is not
sufficient, add this file to your project. CMake code required to find and make use of external software packages
properly shall be added to this file. In order to only make use of the variables set by the package configuration

58

http://www.cmake.org/cmake/help/v2.8.8/cmake.html#command:find_package
http://www.cmake.org/cmake/help/v2.8.8/cmake.html#command:find_package

of the found dependency, consider to add a dependency entry to the BasisProject.cmake file instead and code to
use these variables to config/Settings.cmake.

config/Package.cmake Configures CPack, the CMake package generator for CMake. The packaging of software
using CPack is currently not completely supported by BASIS. This template file is subject to change.

CTestCustom.cmake.in This file defines CTest variables which customize CTest.

Template Layout

- template_name/
- 1.0/

+ _config.py
+ src/
+ config/
+ data/
+ doc/
+ example/
+ modules/
+ test/

- 1.1/
- 2.0/
- 2.1/
- .../

Note: Only the files which were modified or added have to be present in the new template. The basisproject
tool will look in older template directories for any missing files.

Template Versions

The template system is designed to help automate updates of existing libraries to new template versions. Whenever a
template file is modified or removed, the previous project template has to be copied to a new directory with an updated
template version! Otherwise, the three-way diff merge used by the basisproject tool to update existing projects
to this newer template will fail.

Custom Substitutions

The template configuration file named _config.py and located in the top directory of each project template de-
fines not only which files constitute a project, but also the available substitution parameters and defaults used by
basisproject. The template configuration file requires a basic understanding of Python syntax, but is fairly easy
to understand even without much experience. To get an idea of the syntax, take a look at the example below. A
complete example can be found in the BASIS source package in data/templates/basis/1.0/_config.py.

project template configuration script for basisproject tool

--
required project files
required = [

'AUTHORS.txt',
'README.txt',
'INSTALL.txt',
'COPYING.txt',
'CMakeLists.txt',

59

http://www.cmake.org/cmake/help/v2.8.8/cpack.html
http://www.cmake.org/cmake/help/v2.8.8/ctest.html
http://www.vtk.org/Wiki/CMake_Testing_With_CTest#Customizing_CTest

'BasisProject.cmake'
]

--
optional project files
options = {

'config-settings' : {
'desc' : 'Include/exclude custom Settings.cmake file.',
'path' : ['config/Settings.cmake']

},
'config' : {
'desc' : 'Include/exclude all custom configuration files.',
'deps' : [

'config-settings'
]

},
'data' : {
'desc' : 'Add/remove directory for auxiliary data files.',
'path' : ['data/CMakeLists.txt']

}
}

--
preset template options
presets = {

'minimal' : {
'desc' : 'Choose minimal project template.',
'args' : ['src']

},
'default' : {
'desc' : 'Choose default project template.',
'args' : ['doc', 'doc-rst', 'example', 'include', 'src', 'test']

},
'toplevel' : {
'desc' : 'Create toplevel project.',
'args' : ['doc', 'doc-rst', 'example', 'modules']

},
'module' : {
'desc' : 'Create module of toplevel project.',
'args' : ['include', 'src', 'test']

}
}

--
additional substitutions besides <project>, <template>,...
from datetime import datetime as date

substitutions = {
fixed computed substitutions
'date' : date.today().strftime('%x'),
'day' : date.today().day,
'month' : date.today().month,
'year' : date.today().year,
substitutions which can be overridden using a command option
'vendor' : {
'help' : "Package vendor ID (e.g., acronym of provider and/or division).",
'default' : "SBIA"

},

60

'copyright' : {
'help' : "Copyrigth statement optionally including years.",
'default' : str(date.today().year) + " University of Pennsylvania"

},
'license' : {
'help' : "Software license statement, e.g., \"Simplified BSD\".",
'default' : "See http://www.cbica.upenn.edu/sbia/software/license.html or COPYING file."

},
'contact' : {
'help' : "Package contact information.",
'default' : "<vendor> <<vendor>-software at uphs.upenn.edu>"

}
}

Note: The substitutions are applied recursively up to a depth of 3. Hence, if the value of a substitution is another
substitution tag, it will be replaced by the value of that respective substitution. See the contact substitution above
for an example.

Binary Template Files In general, template files are assumed to be binary and thus no substitution is performed,
unless the template file is known to be a text file. Whether or not a template file is considered to be a text file for which
subsitution takes place depends on its MIME type . The basisproject tool uses the Python MIME types module
in order to determine the type of each template file. In addition to the default types known by this module, the file
name extensions .cmake, .md, .mdown, .markdown, .rst, .dox, and .in are treated as text files.

4.3 Project Modularization

Project modularization is a technique that aims to maximize code reusability, allowing components to be split up as
independent modules that can be shared with other projects, while only building and packaging the components that
are really needed. Top Level Project

A top level project is a project that is split into separate independent subprojects, and each of those subprojects are
referred to as modules. A top level project will often have no source files of its own, simply serving as a lightweight
container for its modules. Project Module

A (project) module is a completely independent BASIS project with its own dependencies that resides in the
modules/ directory of a top-level project. Each module will often reside in a separate repository that is designed to
be shared with other projects.

Because modules are usually developed by the same development team, name conflicts are uncommon and can be
avoided by appropriate naming conventions. Therefore, all modules share a common namespace, namely the one of
the top-level project.

For example, if BASIS_USE_TARGET_UIDS is enabled in config/Settings.cmake of the top-level project,
the actual build target names of the top-level project and its modules are of the form <toplevel>.<target>,
where <toplevel> is the package name of the top-level project which usually is the same as the name of the top-
level project, and <target> is the target name argument of basis_add_executable() or basis_add_library(). Note
that if BASIS_USE_FULLY_QUALIFIED_TARGET_UIDS is disabled (the default), the <toplevel> part is only
used for the export of the target.

The basis_project() call of a module must use the NAME parameter to set the name of the module (instead of
SUBPROJECT). Subproject

A subproject is very similar to a project module with a few important differences. While project modules are
lightweight subprojects which are tightly integrated into the top-level project, subprojects are more self-sustained

61

https://en.wikipedia.org/wiki/MIME
http://docs.python.org/2/library/mimetypes.html
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gab7b7600c0ab4197db811f810a04670be
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga3a56e2ed99608316be7309fcc090cc66
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6

and should be treated as separate smaller projects. The top-level project serves as meta-project to group multiple
subprojects. A use case would be to bundle several more or less independent software projects in a single package.
The top-level project can be thus be seen as collection of related software packages, which may or may not depend on
each other.

Because subprojects are usually developed by different development teams, name conflicts are more likely to occur.
Therefore, each subproject has its own (nested) namespace inside the namespace of the package it belongs to, whereas
the symbols of modules have no own namespace, but are directly defined within the namespace of the top-level project.

For example, if BASIS_USE_TARGET_UIDS is enabled in config/Settings.cmake of the top-level project,
the actual build target names are of the form <package>.<subproject>.<target>, where <package> is
the package name of the subproject which corresponds to the package name of the top-level project if not spec-
ified, and <target> is the target name argument of basis_add_executable() or basis_add_library(). Note that if
BASIS_USE_FULLY_QUALIFIED_TARGET_UIDS is disabled (the default), the <package> part is only used
for the export of the target.

Other differences are that BASIS will install separate uninstaller scripts for each subproject and also register each
subproject installation if -DBASIS_REGISTER is enabled. Therefore, a subproject which is installed by one package
can be used directly by other packages as if the subproject was installed separate from the other subprojects and
modules of the top-level project.

The basis_project() call of a subproject must use the SUBPROJECT parameter to set the name of the subproject
(instead of NAME). Additionally, as subprojects are likely shared by multiple top-level projects, it is recommended to
set the PACKAGE_NAME (short PACKAGE) to the name of the package which this subproject belongs to primarily.
Note that this package need not actually exist. By providing this package name, the namespace of the subproject will
always be the same no matter what the name of the top-level project is.

Note: It should be noted that the concept of a namespace can be extended to all aspects of a software project, not only
symbols of programming languages which have it built in such as C++. Therefore, the symbols which belong to the
package namespace include project modules, target names, C++ classes and functions, as well as scripted libraries.

See also:

See Modularize a Project for usage instructions and Project Template for a reference implementation.

Filesystem Layout

By default each module is placed in its own modules/<module_name> subdirectory, but this can be configured
in config/Settings.cmake by modifying the PROJECT_MODULES_DIR variable. More details can be found
in the Filesystem Layout.

The Top Level project often excludes the src/ subdirectory, and instead includes the modules/ directory where the
project’s modules reside.

Dependency Requirements

There are several features and limitations when one top level or subproject uses code from another.

• Modules may depend on each other.

• Each module of a top level project may depend on other modules of the same project, or external projects and
packages.

• Only one level of submodules are allowed in a top level project

• An external project can also be another top-level project with its own modules.

62

https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gab7b7600c0ab4197db811f810a04670be
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga3a56e2ed99608316be7309fcc090cc66
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6

Module CMake Variables

CMake variables available to any project utilizing BASIS. These options can be modified with the ccmake command.
CMake Options describes other important CMake options.

CMake Variable Description
MODULE_<module> Builds the module named <module> when set to ON and excludes it when

OFF. It is automatically set to ON if it is required by another module that is
ON.

BUILD_MODULES_BY_DEFAULT Sets the default state of each MODULE_<module> switch. ON by default.
BUILD_ALL_MODULES Global switch enabling the build of all modules. Overrides all

MODULE_<module> variables.
PROJECT_IS_MODULE Specifies if the current project is a module of another project.

It is recommended that customized defaults for these variables be set in config/Settings.cmake.

Implementation

The modularization is mainly implemented with the following hierarchy presented in the same manner as a stack trace
with the top function being the last function called:

• ProjectTools.cmake - basis_project_modules()

• ProjectTools.cmake - basis_project_begin()

• BasisProject.cmake - script file that is executed directly

• CMakeLists.txt - root file of any CMake project

The script then takes the following steps:

1. The basis_project_modules() function searches the subdirectories in the modules/ directory for the presence
of the BasisProject.cmake file.

2. BasisProject.cmake is then loaded to retrieve the meta-data of each module such as its name and dependencies.

3. A MODULE_<module> option is added to the build configuration for each module and module dependencies
are defined that correspond to the settings in BasisProject.cmake. This enables the eventual execution of the
build step to be in the correct topological order. The MODULE_<module> settings obey the following con-
straints:

• When OFF the module is excluded from both the project build and any package generated by CPack.

• When ON the module builds as part of the top-level project.

• If one module requires another, the required module will automatically be set to ON.

• All MODULE_<module> options are superceded by the BUILD_ALL_MODULES when it is set to ON.

Besides adding these options, the basis_project_modules() function ensures that the modules are configured with the
right dependencies so that the generated build files will compile them correctly.

It also helps the basis_find_package() function find the other modules’ package configuration files, which are either
generated from the default Config.cmake.in file or a corresponding file found in the config/ directory of each
module.

The other BASIS CMake functions may also change their actual behaviour depending on the PROJECT_IS_MODULE
variable, which specifies whether the project that is currently being configured is a module of another project (i.e.,
PROJECT_IS_MODULE is TRUE) or a top-level project (i.e., PROJECT_IS_MODULE is FALSE).

63

https://cmake-basis.github.io/apidoc/latest/ProjectTools_8cmake.html
https://cmake-basis.github.io/apidoc/latest/group__CMakeUtilities.html#gadc15bedde27fe73c74a7f0f56b1c36d1
https://cmake-basis.github.io/apidoc/latest/ProjectTools_8cmake.html
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga2a64dd1aba417c5c92513027ed901bd7
https://cmake-basis.github.io/apidoc/latest/BasisProject_8cmake.html
https://cmake-basis.github.io/apidoc/latest/group__CMakeUtilities.html#gadc15bedde27fe73c74a7f0f56b1c36d1
https://cmake-basis.github.io/apidoc/latest/BasisProject_8cmake.html
https://cmake-basis.github.io/apidoc/latest/BasisProject_8cmake.html
https://cmake-basis.github.io/apidoc/latest/BasisProject_8cmake.html
http://www.cmake.org/cmake/help/v2.8.8/cpack.html
https://cmake-basis.github.io/apidoc/latest/group__CMakeUtilities.html#gadc15bedde27fe73c74a7f0f56b1c36d1
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gac9a1326ff8b06b17aebbb6b852ca73af
https://cmake-basis.github.io/apidoc/latest/BASISConfig_8cmake.html

Origin

The modularization concepts and part of the CMake implementation are from the ITK 4 project. See the Wiki of this
project for details on the ITK 4 Modularization.

Reuse

Modules can be built standalone without a Top Level Project.

This is why the BasisProject.cmake meta-data requires an explicit PACKAGE_NAME. When you configure the build
system of a project module directly, i.e., by using the module’s subdirectory as root of the source tree, it will still build
as if it was part of a Top Level Project with name equal to the PACKAGE_NAME of the project.

The explicit package name is also important for the executable (target) referencing that is used for subprocess invo-
cations covered in Calling Conventions. A developer can use the target name (e.g., basis.basisproject) in the BASIS
utility functions for executing a subprocess, and the path to the actually installed binary is resolved by BASIS. This
allows the developer of the respective module to change the location/name of a binary file through the CMake config-
uration and other code which uses this module’s executable can still call it by its unchanged build target name. As the
target name includes the package name of a project to avoid name conflicts among packages, the package name which
a module belongs to must be known even if the module is build independently without any Top Level Project.

Superbuild

Note: The superbuild of project modules is yet experimental and not fully documented!

CMake’s ExternalProject module is sometimes used to create a superbuild, where components of a software or its
external dependencies are compiled separately. This has already been done with several projects.

An experimental superbuild of project modules is implemented by the basis_add_module() function. It
is disabled by default, i.e. each module is configured right away using add_subdirectory. The
-DBASIS_SUPERBUILD_MODULES option can be used to enable the superbuild of modules. This can dramat-
ically speed up the build system configuration for projects which contain a large number of modules, because the
configuration of each module is deferred until the build step. Moreover, only modules which were modified since the
last build will be reconfigured when the top-level project is re-build. Without the superbuild approach, the entire build
system of the top-level project needs to be reconfigured in such case.

If the superbuild of modules should always be enabled, add the following CMake code to
config/Settings.cmake:

if (NOT BASIS_SUPERBUILD_MODULES)
set (
BASIS_SUPERBUILD_MODULES ON CACHE BOOLEAN

"This project always builds the modules using a superbuild approach."
FORCE

)
message (WARNING "Option BASIS_SUPERBUILD_MODULES set to ON as this project"

" always builds its modules using a superbuild approach."
" The BASIS_SUPERBUILD_MODULES option cannot be changed.")

endif ()

Alternatively, the following line would be sufficient as well without feedback for the user:

set (BASIS_SUPERBUILD_MODULES OFF)

64

http://www.itk.org/Wiki/ITK_Release_4
http://www.vtk.org/Wiki/ITK_Release_4/Modularization
https://cmake-basis.github.io/apidoc/latest/BasisProject_8cmake.html
http://www.cmake.org/cmake/help/v2.8.12/cmake.html#module:ExternalProject
https://cmake-basis.github.io/apidoc/latest/ProjectTools_8cmake.html#a3a415934791eb5f933ccc3acc3672137

See also:

A superbuild can also take care of building BASIS itself if it is not installed on the system, as well as any other external
library that is specified as dependency of the project. See the Superbuild of BASIS and other dependencies.

4.4 Build of Script Targets

Unlike source files written in non-scripting languages such as C++ or Java, source files written in scripting languages
such as Python, Perl, or BASH do not need to be compiled before their execution. They are interpreted directly
and hence do not need to be build (in case of Python, however, they are as well compiled by the interpreter itself
to improve speed). On the other side, CMake provides a mechanism to replace CMake variables in a source file by
their respective values which are set in the CMakeLists.txt files (or an included CMake script file). As it is often
useful to introduce build specific information in a script file such as the relative location of auxiliary executables or
data files, the basis_add_executable() and basis_add_library() commands also provide a means of building script files.
How these functions process scripts during the build of the software is discussed next. Afterwards it is described how
the build of scripts can be configured.

Prerequisites and Build Steps

During the build of a script, the CMake variables as given by @VARIABLE_NAME@ patterns are replaced by the value
of the corresponding CMake variable if defined, or by an empty string otherwise. Similar to the configuration of source
files written in C++ or MATLAB, the names of the script files which shall be configured by BASIS during the build step
have to end with the .in suffix. Otherwise, the script file is not modified by the BASIS build commands and simply
copied to the build tree or installation tree, respectively. Opposed to configuring the source files already during the
configure step of CMake, as is the case for C++ and MATLAB source files, script files are configured during the build
step to allow for the used CMake variables to be set differently depending on whether the script is intended for use
inside the build tree or the installation tree. Moreover, certain properties of the script target can still be modified after
the basis_add_executable() or basis_add_library() command, respectively, using the basis_set_target_properties() or
basis_set_property() command. Hence, the final values of these variables are not known before the configuration of the
build system has been completed. Therefore, all CMake variables which are defined when the basis_add_executable()
or basis_add_library() command is called, are dumped to a CMake script file to preserve their value at this moment
and the dump of the variables is written to a file in the build tree. This file is loaded again during the build step by the
custom build command which eventually configures the script file using CMake’s configure_file() command with the
@ONLY option. This build command configures the script file twice. The first “built” script is intended for use within
the build tree while the second “built” script will be copied upon installation to the installation tree.

Before each configuration of the (template) script file (the .in source file in the source tree), the file with the dumped
CMake variable values and the various script configuration files are included in the following order:

1. Dump file of CMake variables defined when the script target was added.

2. Default script configuration file of BASIS (BasisScriptConfig.cmake).

3. Default script configuration file of individual project (ScriptConfig.cmake, optional).

4. Script configuration code specified using the CONFIG argument of the basis_add_executable() or ba-
sis_add_library() command.

Script Configuration

The so-called script configuration is CMake code which defines CMake variables for use within script files. This
code is either saved in a CMake script file with the .cmake file name extension or specified directly as argument
of the CONFIG option of the basis_add_executable() or basis_add_library() command used to add a script target to
the build system. The variables defined by the script configuration are substituted by their respective values during
the build of the script target. Note that the CMake code of the script configuration is evaluated during the build of

65

https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gab7b7600c0ab4197db811f810a04670be
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga3a56e2ed99608316be7309fcc090cc66
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gab7b7600c0ab4197db811f810a04670be
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga3a56e2ed99608316be7309fcc090cc66
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga0402a3fb3e7f04f4a61a92f41b816203
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga2a4a9b1c9c3aab8379d0f51b5853d9c4
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gab7b7600c0ab4197db811f810a04670be
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga3a56e2ed99608316be7309fcc090cc66
http://www.cmake.org/cmake/help/v2.8.8/cmake.html#command:configure_file
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gab7b7600c0ab4197db811f810a04670be
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga3a56e2ed99608316be7309fcc090cc66
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga3a56e2ed99608316be7309fcc090cc66
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gab7b7600c0ab4197db811f810a04670be
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga3a56e2ed99608316be7309fcc090cc66

the script target, not during the configuration of the build system. During the configuration of the build systems, the
script configuration is, however, configured in order to replace @VARIABLE_NAME@ patterns in the configuration
by their respective values as defined by the build configuration (CMakeLists.txt files). Therefore, the variables
defined in the script configuration can be set differently for each of the two builds of the script files. If the script
configuration is evaluated before the configuration of the script file for use inside the build tree, the CMake variable
BUILD_INSTALL_SCRIPT is set to FALSE. Otherwise, if the script configuration is evaluated during the build of
the script for use in the installation tree, this variable is set to TRUE instead. It can therefore be used to set the variables
in the script configuration depending on whether or not the script is build for use in the build tree or the installation
tree.

For example, the project structure differs for the build tree and the installation tree. Hence, relative file paths
to the different directories of data files, for instance, have to be set differently depending on the value of
BUILD_INSTALL_SCRIPT, i.e.,

if (BUILD_INSTALL_SCRIPT)
set (DATA_DIR "@CMAKE_INSTALL_PREFIX@/@INSTALL_DATA_DIR@")

else ()
set (DATA_DIR "@PROJECT_DATA_DIR@")

endif ()

Avoid the use of absolute paths, however! Instead, use the __DIR__ variable which is set in the build script to the
directory of the output script file to make these paths relative to this directory which contains the configured script file.
These relative paths which are defined by the script configuration are then used in the script file as follows:

#! /usr/bin/env bash
. ${BASIS_BASH_UTILITIES} || { echo "Failed to import BASIS utilities!" 1>&2; exit 1; }
exedir EXEDIR && readonly EXEDIR
[$? -eq 0] || { echo 'Failed to determine directory of this executable!'; exit 1; }
readonly DATA_DIR="${EXEDIR}/@DATA_DIR@"

where DATA_DIR is the relative path to the required data files as determined during the evaluation of the script
configuration. See documentation of the basis_set_script_path() function for a convenience function which can be
used therefore. Note that this function is defined in the custom build script generated by BASIS for the build of each
script target and hence can only be used within a script configuration. For example, use this function as follows in the
PROJECT_CONFIG_DIR/ScriptConfig.cmake.in script configuration file of your project:

basis_set_script_path(DATA_DIR "@PROJECT_DATA_DIR@" "@INSTALL_DATA_DIR@")

Note that most of the more common variables which are useful for the development of scripts are already defined by
the default script configuration file of BASIS. Refer to the documentation of the BasisScriptConfig.cmake file for a list
of available variables.

4.5 Command-line Parsing

Most of the software developed in a research environment is based on the command-line, as command-line tools are
easier and thus faster implemented then tools with graphical user interface. To help the developer, who wants to focus
on the actual image processing algorithm rather than the parsing of the command-line arguments, BASIS intends
to provide a command-line parsing library for each of the commonly used programming languages. The following
sections document the usage of these libraries for each respective programming language:

Parsing the Command-line Arguments in C++

For the parsing of command-line arguments in C++, BASIS includes a slightly extended version of the Templatized
C++ Command Line Parser (TCLAP) Library. For details and usage of this library, please refer to the TCLAP docu-
mentation. It is in particular recommended to read the TCLAP manual. Further, the TCLAP API documentation is a

66

https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gaccf81cde4956c3f4607a008bc340a79a
https://cmake-basis.github.io/apidoc/latest/BasisScriptConfig_8cmake.html
http://tclap.sourceforge.net/
http://tclap.sourceforge.net/manual.html

good reference on the available command-line argument classes. The API documentation of the TCLAP classes can
also be found as part of this documentation.

Note: BASIS provides its own subclass of the TCLAP::CmdLine class which is also named CmdLine, but in the
basis namespace, i.e., basis::CmdLine. Most of the argument implementations are, however, simply typedefs
of the commonly used TCLAP::Arg subclasses. See the API documentation for a list of command-line arguments
which are made available as part of the basis namespace.

The usage of the command-line parsing library shall be demonstrated in the following on the implementation of an
example command-line program. It should be noted that the try-catch block in the main() function will only help to
track errors in the command-line specification, but once the cmd instance is initialized properly, all runtime exceptions
related to the parsing of the command-line are handled by BASIS.

/**
* @file smoothimage.cxx

* @breif Smooth image using Gaussian or anisotropic diffusion filtering.

*/

#include <package/basis.h> // include BASIS C++ utilities

// acceptable in .cxx file
using namespace std;
using namespace basis;

// ===
// smoothing filters
// ===

// ---
int gaussianfilter(const string& imagefile,

const vector<unsigned int>& r,
double std)

{
// [...]
return 0;

}

// ---
int anisotropicfilter(const string& imagefile)
{

// [...]
return 0;

}

// ===
// main
// ===

// ---
int main(int argc, char* argv[])
{

// ---
// define command-line arguments
SwitchArg gaussian(// option switch

"g", "gaussian", // short and long option name

67

https://cmake-basis.github.io/apidoc/latest/group__CxxCmdLine.html

"Smooth image using a Gaussian filter.", // argument help
false); // default value

SwitchArg anisotropic(// option switch
"a", "anisotropic", // short and long option name
"Smooth image using anisotropic diffusion filter.", // argument help
false); // default value

MultiUIntArg gaussian_radius(// unsigned integer values
"r", "radius", // short and long option name
"Radius of Gaussian kernel in each dimension.", // argument help
false, // required?
"<rx> <ry> <rz>", // value type description
3, // number of values per argument
true); // accept argument only once

DoubleArg gaussian_std(// floating-point argument value
"", "std", // only long option name
"Standard deviation of Gaussian in voxel units.", // argument help
false, // required?
2.0, // default value
"<float>"); // value type description

// [...]

PositionalArg imagefile(// positional, i.e., unlabeled
"image", // only long option name
"Image to be smoothed.", // argument help
true, // required?
"", // default value
"<image>"); // value type description

// ---
// parse command-line
try {

vector<string> examples;

examples.push_back(
"EXENAME --gaussian --std 3.5 --radius 5 5 3 brain.nii\n"
"Smooths the image brain.nii using a Gaussian with standard"
" deviation 3.5 voxel units and 5 voxels in-slice radius and"
" 3 voxels radius across slices.");

examples.push_back(
"EXENAME --anisotropic brain.nii\n"
"Smooths the image brain.nii using an anisotropic diffusion filter.");

CmdLine cmd(
// program identification
"smoothimage", PROJECT,
// program description
"This program smooths an input image using either a Gaussian "
"filter or an anisotropic diffusion filter.",
// example usage
examples,
// version information
RELEASE, "2011 University of Pennsylvania");

68

// The constructor of the CmdLine class has already added the standard
// arguments --help, --helpshort, --helpxml, --helpman, and --version.

cmd.xorAdd(gaussian, anisotropic);
cmd.add(gaussian_std);
cmd.add(gaussian_radius);
cmd.add(imagefile);

cmd.parse(argc, argv);
} catch (CmdLineException& e) {

// invalid command-line specification
cerr << e.error() << endl;
exit(1);

}

// ---
// smooth image - access parsed argument value using Arg::getValue()
unsigned int r[3];

if (gaussian.getValue()) {
return gaussianfilter(imagefile.getValue(),

gaussian_radius.getValue(),
gaussian_std.getValue());

} else {
return anisotropicfilter(imagefile.getValue());

}
}

Running the above program with the --help option will give the output:

SYNOPSIS
smoothimage [--std <float>] [--radius <rx> <ry> <rz>] [--verbose|-v]

{--gaussian|--anisotropic} <image>
smoothimage [--help|-h|--helpshort|--helpxml|--helpman|--version]

DESCRIPTION
This program smooths an input image using either a Gaussian filter or
an anisotropic diffusion filter.

OPTIONS
Required arguments:

-g or --gaussian
Smooth image using a Gaussian filter.

or -a or --anisotropic
Smooth image using anisotropic diffusion filter.

<image>
Image to be smoothed.

Optional arguments:
-s or --std <float>

Standard deviation of Gaussian in voxel units.

-r or --radius <rx> <ry> <rz>
Radius of Gaussian kernel in each dimension.

Standard arguments:
-- or --ignore_rest

Ignores the rest of the labeled arguments following this flag.

69

-v or --verbose
Increase verbosity of output messages.

-h or --help
Display help and exit.

--helpshort
Display short help and exit.

--helpxml
Display help in XML format and exit.

--helpman
Display help as man page and exit.

--version
Display version information and exit.

EXAMPLE
smoothimage --gaussian --std 3.5 --radius 5 5 3 brain.nii

Smooths the image brain.nii using a Gaussian with standard
deviation 3.5 voxel units and 5 voxels in-slice radius and 3 voxels
radius across slices.

smoothimage --anisotropic brain.nii

Smooths the image brain.nii using an anisotropic diffusion filter.

CONTACT
SBIA Group <sbia-software at uphs.upenn.edu>

The --helpshort output contains the synopsis of the full help only:

smoothimage [--std <float>] [--radius <rx> <ry> <rz>] [--verbose|-v]
{--gaussian|--anisotropic} <image>

smoothimage [--help|-h|--helpshort|--helpxml|--helpman|--version]

Parsing the Command-line Arguments in Bash

Note: This how-to guide has to be written yet. See the shflags.sh module as a reference until this guide is completed,
keeping in mind, though, that this module will have to be revised.

Note: Yet there exist only libraries for C++ and BASH, but solutions for Java, Python, and Perl will be part of future
releases.

4.6 Calling Conventions

This document discusses and describes the conventions for calling other executables from a program. The calling con-
ventions address problems stemming from the use of relative or absolute file paths when calling executables. It also

70

https://cmake-basis.github.io/apidoc/latest/shflags_8sh.html

introduce a name mapping from build target names to actual executable file paths. These calling conventions are han-
dled through automatically generated utility functions for each supported programming language. See Implementation
for details on the specific implementations in each language.

Purpose

One nice feature about using the target name instead of the actual executable file allows a developer of project B to
call executables of project A using the (“full qualified”) target names, e.g.,

execute(“projecta.utility”);

This target has been imported from the export file during CMake configuration and the BASIS execute function will
map this target name to the installed executable of project A. The developer of project A can rename the executable or
change the installation location as they wish. They only need to keep the internal target name.

The file name of executable scripts, for example, will be different on Unix and Windows. On Unix, we don’t use
file name extensions and instead rely on the hashbang/shebang #! directive such that script executables look and are
used just like binary executables. On Windows, any executable script (i.e., only Python or Perl at the moment) is
wrapped into a Windows Command file with the .cmd file name extension. This file contains a few lines additional
Windows Command code to invoke the script interpreter with the very same file. The Windows Command code is just
a comment to the Python/Perl interpreter which will ignore it.

Relative vs. Absolute Paths

Relative paths such as only the executable file name require a proper setting of the PATH environment variable. If more
than one version of a particular software package should be installed or in case of name conflicts with other packages,
this is not trivial and it may not be guaranteed that the correct executable is executed. Absolute executable file paths, on
the other side, restrict the relocatability and thus distribution of pre-build binary packages. Therefore, BASIS proposes
and implements the following convention on how absolute paths of (auxiliary) executables are determined at runtime
by taking the absolute path of the directory of the calling executable into consideration.

Main executables in the bin/ directory call utility executables relative to their own location. For example, a Bash
script called main that executes a utility script util in the lib/ directory would do so as demonstrated in the
following example code (for details on the @VAR@ patterns, please refer to the Build of Script Targets page):

among others, defines the get_executable_directory() function
. ${BASIS_Bash_UTILITIES} || { echo "Failed to import BASIS utilities!" 1>&2; exit 1; }
get absolute directory path of auxiliary executable
exedir _EXEC_DIR && readonly _EXEC_DIR
_LIBEXEC_DIR=${_EXEC_DIR}/@LIBEXEC_DIR@
call utility executable in libexec directory
${_LIBEXEC_DIR}/util

where LIBEXEC_DIR is set in the BasisScriptConfig.cmake configuration file to either the output directory of aux-
iliary executables in the build tree relative to the directory of the script built for the build tree or to the path of the
installed auxiliary executables relative to the location of the installed script. Note that in case of script files, two ver-
sions are build by BASIS, one that is working directly inside the build tree and one which is copied to the installation
tree. In case of compiled executables, such as in particular programs built from C++ source code files, a different but
similar approach is used to avoid the build of two different binary executable files. Here, the executable determines at
runtime whether it is executed from within the build tree or not and uses the appropriate path depending on this.

If an executable in one directory wants to execute another executable in the same directory, it can simply do so as
follows:

call other main executable
${_EXEC_DIR}/othermain

71

http://en.wikipedia.org/wiki/Shebang_(Unix)
http://www.gnu.org/software/bash/
https://cmake-basis.github.io/apidoc/latest/group__BasisScriptConfig.html#gab41b55712c871a1c6ef0407894d58958
https://cmake-basis.github.io/apidoc/latest/BasisScriptConfig_8cmake.html

File vs. Target Name

In order to be independent of the actual names of the executable files–which may vary depending on the operating
system (e.g., with or without file name extension in case of script files) and the context in which a project was built–
executables should not be called by their respective file name, but their build target name.

It is in the responsibility of the BASIS auxiliary functions to properly map this project specific and (presumably)
constant build target name to the absolute file path of the built (and installed) executable file. This gives BASIS the
ability to modify the executable name during the configuration step of the project, for example, to prepand them with
a unique project-specific prefix, in order to ensure uniqueness of the executable file name. Moreover, if an executable
should be renamed, this can be done simply through the build configuration and does not require a modification of the
source code files which make use of this executable.

Search Paths

All considered operating systems–or more specifically the used shell and dynamic loader–provide certain ways to
configure the search paths for executable files and shared libraries which are dynamically loaded on demand. The
details on how these search paths can be configured are summarized next including the pros and cons of each method
to manipulate these search paths. Following these considerations, the solution aimed at by BASIS is detailed.

Unix

On Unix-based systems (including in particular all variants of Linux and Mac OS) executables are searched in di-
rectories specified by the PATH environment variable. Shared libraries, on the other side, are first searched in the
directories specified by the LD_LIBRARY_PATH environment variable, then in the directories given by the RPATH
which is set within the binary files at compile time, and last the directories specified in the /etc/ld.so.conf
system configuration file.

The most flexible method which can also easily be applied by a user is setting the LD_LIBRARY_PATH environment
variable. It is, however, not always trivial or possible to set this search path in a way such that all used and installed
software works correctly. There are many discussions on why this method of setting the search path is considered evil
among the Unix community (see for example here). The second option of setting the RPATH seems to be the most
secure way to set the search path at compile time. This, however, only for shared libraries which are distributed and
installed with the software because only in this case can we make use of the $ORIGIN variable in the search path to
make it relative to the location of the binary file. Otherwise, it is either required that the software is being compiled
directly on the target system or the paths to the used shared libraries on the target system must match the paths of the
system on which the executable was built. Hence, using the RPATH can complicate or restrict the relocatability of a
software. Furthermore, unfortunately is the LD_LIBRARY_PATH considered before the RPATH and hence any user
setting of the LD_LIBRARY_PATH can still lead to the loading of the wrong shared library. The system configuration
/etc/ld.so.conf is not an option for setting the search paths for each individual software. This search path
should only be set to a limited number of standard system search paths as changes affect all users. Furthermore,
directories on network drives may not be included in this configuration file as they will not be available during the first
moments of the systems start-up. Finally, only an administrator can modify this configuration file.

The anticipated method to ensure that the correct executables and shared libraries are found by the system for Unix-
based systems is as follows. As described in the previous sections, executables which are part of the same software
package are called by the full absolute path and hence no search path needs to be considered. To guarantee that shared
libraries installed as part of the software package are considered first, the directory to which these libraries where
installed is prepended to the LD_LIBRARY_PATH prior to the execution of any other executable. Furthermore, the
RPATH of binary executable files is set using the $ORIGIN variable to the installation directory of the package’s
shared libraries. This ensures that also for the execution of the main executable, the package’s own shared libraries
are considered first. To not restrict the administrator of the target system on where other external packages need to be
installed, no precaution is taken to ensure that executables and shared libraries of these packages are found and loaded
properly. This is in the responsibility of the administrator of the target system. However, by including most external

72

http://xahlee.org/UnixResource_dir/_/ldpath.html

packages into the distributed binary package, these become part of the software package and thus above methods
apply.

Note: The inclusion of the runtime requirements should be done during the packaging of the software and thus these
packages should still not be integrated into the project’s source tree.

Mac OS bundles differ from the default Unix-like way of installing software. Here, an information property list file
(Info.plist) is used to specify for each bundle separately the specific properties including the location of frameworks,
i.e., private shared libraries (shared libraries distributed with the bundle). Most shared libraries required by the software
will be included in the bundle.

Windows

On Windows systems, executable files are first searched in the current working directory. Then, the directories speci-
fied by the PATH environment variable are considered as search path for executable files where the extensions .exe,
.com, .bat, and .cmd are considered by default and need not be included in the name of the executable that is to
be executed. Shared libraries, on the other side, are first searched in the directory where the using module is located,
then in the current working directory, the Windows system directory (e.g., C:\WINDOWS\system32\), and then
the Windows installation directory (e.g., C:\WINDOWS). Finally, the directories specified by the PATH environment
variable are searched for the shared libraries.

As described in the previous sections, executables which are part of the software package are called by the full absolute
path and hence no search path is considered. Further, shared runtime libraries belonging to the software package are
installed in the same directory as the executables and hence will be considered by the operating system before any
other shared libraries.

Implementation

In the following the implementation of the calling conventions in each supported programming language is summa-
rized.

Note that the BASIS Utilities provide an execute() function for each of these languages which accepts either an
executable file path or a build target name as first argument of the command-line to execute.

C++

For C++ programs, the BASIS C++ utilities provide the function exepath() which maps a build target name to the
absolute path of the executable file built by this target. This function makes use of an implementation of the ba-
sis::util::IExecutableTargetInfo interface whose constructor is automatically generated during the configuration of a
project. This constructor initializes the data structures required for the mapping of target names to absolute file paths.
Note that BASIS generates different implementations of this module for different projects, the whose documentation
is linked here is the one generated for BASIS itself.

The project implementations will, however, mainly make use of the execute() function which accepts either an actual
executable file path or a build target name as first argument of the command-line to execute. This function shall be
used in C++ code as a substitution for the commonly used system() function on Unix. The advantage of execute()
is further, that it is implemented for all operating systems which are supported by BASIS, i.e., Linux, Mac OS, and
Windows. The declaration of the execute() function can be found in the basis.h header file. Note that this file
is unique to each BASIS project.

73

http://developer.apple.com/library/mac/#documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html
https://cmake-basis.github.io/apidoc/latest/group__BasisUtilities.html
https://cmake-basis.github.io/apidoc/latest/group__BasisCxxUtilities.html
https://cmake-basis.github.io/apidoc/latest/classbasis_1_1util_1_1IExecutableTargetInfo.html
https://cmake-basis.github.io/apidoc/latest/classbasis_1_1util_1_1IExecutableTargetInfo.html
https://cmake-basis.github.io/apidoc/latest/group__BasisCxxUtilities.html
http://www.cplusplus.com/reference/clibrary/cstdlib/system/

Java

The Java programming language is not yet supported by BASIS.

Python

A Python module named basis.py stores the location of the executables relative to its own path in a dictionary where
the UIDs of the corresponding build targets are used as keys. The functions exename(), exedir(), and exepath() can be
used to get the name, directory, or path, respectively, of the executable file built by the specified target. If no target is
specified, the name, directory, or path of the calling executable itself is returned.

Perl

The Basis.pm Perl module uses a hash reference to store the locations of the executable files relative to the module
itself. The functions exename(), exedir(), and exepath() can be used to get the name, directory, or path, respectively,
of the executable file built by the specified target. If no target is specified, the name, directory, or path of the calling
executable itself is returned.

Bash

The module basis.sh imitates associative arrays to store the location of the built executable files relative to this module.
The functions exename(), exedir(), and exepath() can be used to get the name, directory, or path, respectively, of the
executable file built by the specified target. If no target is specified, the name, directory, or path of the calling executable
itself is returned.

Additionally, the basis.sh module can setup aliases named after the UID of the build targets for the absolute file path
of the corresponding executables. The target names can then be simply used as aliases for the actual executables. The
initialization of the aliases is, however, at the moment expensive and delays the load time of the executable which
sources the basis.sh module. Note further that this approach requires the option expand_aliases to be set via
shopt -s expand_aliases which is done by the basis.sh module if aliases were enabled. A shopt -u
expand_aliases disables the expansion of aliases and hence should not be used in Bash scripts which execute
other executables using the aliases defined by basis.sh.

Unsupported Languages

In the following, languages for which the calling conventions are not implemented are listed. Reasons for not sup-
porting these languages regarding the execution of other executables are given for each such programming language.
Support for all other programming languages which are not supported yet and not listed here may be added in future
releases of BASIS.

MATLAB

Visit this MathWorks page for a documentation of external interfaces MathWorks provides for the development of
applications in MATLAB. An implementation of the execute() function in MATLAB is yet not provided by BASIS.

74

https://cmake-basis.github.io/apidoc/latest/basis_8py.html
https://cmake-basis.github.io/apidoc/latest/group__BasisPythonUtilities.html#gad832403b77ea714613fe9d8792fc2d76
https://cmake-basis.github.io/apidoc/latest/group__BasisPythonUtilities.html#gae4a179b411575e221d6363bdc5e08946
https://cmake-basis.github.io/apidoc/latest/group__BasisPythonUtilities.html#ga300b1dc5bb4d6d7d13dc8ac4fec9a368
https://cmake-basis.github.io/apidoc/latest/Basis_8pm.html
https://cmake-basis.github.io/apidoc/latest/group__BasisPerlUtilities.html#gabcdbfcbc0a8f61d74af795ec1cc3201c
https://cmake-basis.github.io/apidoc/latest/group__BasisPerlUtilities.html#gae2fad71a402bbbe877cc62e6c8dad4d7
https://cmake-basis.github.io/apidoc/latest/group__BasisPerlUtilities.html#gaaafd1e575a71a6eb230c712f1ae9f72b
https://cmake-basis.github.io/apidoc/latest/basis_8sh.html
https://cmake-basis.github.io/apidoc/latest/group__BasisBashUtilities.html#gae51069427c675de3fdc22e3b8edbd282
https://cmake-basis.github.io/apidoc/latest/group__BasisBashUtilities.html#ga910356e76596e5bdbedb544186ff395b
https://cmake-basis.github.io/apidoc/latest/group__BasisBashUtilities.html#ga40ae56f084f0786fe49bfc98e2fabf1f
https://cmake-basis.github.io/apidoc/latest/basis_8sh.html
https://cmake-basis.github.io/apidoc/latest/basis_8sh.html
https://cmake-basis.github.io/apidoc/latest/basis_8sh.html
http://www.mathworks.com/help/techdoc/matlab_external/bp_kqh7.html
http://www.mathworks.com/
http://www.mathworks.com/products/matlab/

5 Guidelines

The following sections define common guidelines for the formatting of documents such as in particular program code
as well as other recommended coding guidelines. Each organization employing BASIS, however, may define their
own guidelines, possibly using the following guidelines as reference.

5.1 Plain Text Format

Note: This guideline is out-dated and a new set of rules must be defined which is compatible with either Markdown
or reStructuredText, nowadays the preferred lightweight markup languages for plain text files.

The following guideline, which itself is styled according to the plain text format it describes, details how plain text
documentation files of a software project should be formatted.

Section of Biomedical Image Analysis
Department of Radiology
University of Pennsylvania
3600 Market Street, Suite 380
Philadelphia, PA 19104

Web: http://www.cbica.upenn.edu/sbia/
Email: sbia-software at uphs.upenn.edu

Copyright (c) 2011 University of Pennsylvania. All rights reserved.
See http://www.cbica.upenn.edu/sbia/software/license.html or COPYING file.

INTRODUCTION
============

This document defines guidelines on how to style plain text documentation
files such as the readme file and the build and installation instructions.
A common style makes it easier for users of software developed at SBIA to
navigate through the documents and recognize what is of importance to them.
Moreover, it serves as a branding of the software. Each individual software
project shall finally be integrated with all the other software projects
to form one unique software package. Here a common documentation style is
desired such that the separate subprojects nicely integrate with each other.

HEADER
======

Each plain text document has to start with the following header with one
blank line before and each line indented by two space characters.

Section of Biomedical Image Analysis
Department of Radiology
University of Pennsylvania
3600 Market Street, Suite 380
Philadelphia, PA 19104

75

Web: http://www.cbica.upenn.edu/sbia/
Email: sbia-software at uphs.upenn.edu

Copyright (c) <year> University of Pennsylvania. All rights reserved.
See http://www.cbica.upenn.edu/sbia/software/license.html or COPYING file.

HEADINGS
========

Headings of level 1 are capitalized as in this document. All other headings
are spelled case-sensitive where the first letter of words with four or more
characters are started with an uppercase letter. Headings of level 1 are
not intended, while all other headings are intended by two space characters.

For headings of level 1, a line of = characters as long as the heading is
used to underline it. For headings of level 2, - characters are used instead.
All other headings are not underlined.

Before each heading of level 1, three blank lines are inserted.
Before each heading of level 2, two blank lines are inserted.
Before any other heading, one blank line is inserted.

A heading and its text block are indented by (level - 1) * 2 space characters.
Hence, headings of level 1 are not indented, while headings of level 2 are
indented by two space characters.

TEXT BLOCKS
===========

The number of columns in a text block is limited to about 80 characters.
Each text block is indented equally to the indentation of its heading,
where at least two space characters are used to intend a text block.
Hence, even though headings of level 1 are not indented, so are the
corresponding text blocks.

There are no space characters on blank lines.

ENUMERATIONS
============

Use -, +, and * characters as bullet points.

76

6 Reference

6.1 Basic Tools

In order to ease certain tasks, the BASIS package also includes the following command-line tools:

basisproject Creates a new project or modifies an existing one in order to add or remove certain com-
ponents of the template or to upgrade to a newer template.

basistest Implements automated software tests.
doxyfilter Doxygen filter for all supported languages.

6.2 CMake Modules

The CMake modules and corresponding auxiliary files are used by any BASIS project for the configuration of the
CMake-based build system, so that many setup steps can be automated. These commands often replace the standard
CMake commands. For example, the CMake function basis_add_executable() replaces CMake’s add_executable()
command.

The main CMake modules are:

BasisProject.cmake File in every BASIS project defining basic project information.
BasisTools.cmake Defines CMake functions, macros, and variables.
BasisTest.cmake Replacement for the CTest.cmake module of CMake.
BasisPack.cmake Replacement for the CPack.cmake module of CMake.

6.3 Utilities

For each supported programming language, BASIS provides a library of utility functions. Some of these utilities are
project independent and thus built and installed as part of the CMake BASIS package itself. Other utility implemen-
tations are project dependent. Therefore, the BASIS installation contains only template files which are customized
and built during the configuration and build, respectively, of the particular BASIS project. This customization is
done by the functions implemented by the UtilitiesTools.cmake module which is included and utilized by the main
BasisTools.cmake module.

The BASIS utilities address the following aspects of the software implementation standard:

• Command-line Parsing

• Calling Conventions

• Software Testing (TODO)

6.4 Project Layout

A brief summary of the common project layout required by all projects that follow BASIS is given below. Project
templates are supplied by the BASIS package to make it easy for projects to follow this BASIS Project Directory
Layout and standard Project Template. How to create and use such template is explained in the Using and Customizing
Templates guide. The basisproject command-line tool further automates and simplifies the creation of new projects
based on a project template.

77

https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gab7b7600c0ab4197db811f810a04670be
http://www.cmake.org/cmake/help/cmake-2-8-docs.html#command:add_executable
https://cmake-basis.github.io/apidoc/latest/BasisProject_8cmake.html
https://cmake-basis.github.io/apidoc/latest/BasisTools_8cmake.html
https://cmake-basis.github.io/apidoc/latest/BasisTest_8cmake.html
https://cmake-basis.github.io/apidoc/latest/BasisPack_8cmake.html
https://cmake-basis.github.io/apidoc/latest/group__BasisUtilities.html
https://cmake-basis.github.io/apidoc/latest/UtilitiesTools_8cmake.html
https://cmake-basis.github.io/apidoc/latest/BasisTools_8cmake.html

config/ Package configuration files.
data/ Data files required by the software.
doc/ Documentation source files.
example/ Example files for users to try out the software.
include/ Header files of the public API of libraries.
lib/ Module files for scripting languages.
modules/ Project Modules (i.e., subprojects).
src/ Source code files.
test/ Implementations of unit and regression tests.
AUTHORS (.txt|.md) A list of the people who contributed to this sofware.
BasisProject.cmake Calls basis_project() to set basic project information.
CMakeLists.txt Root CMake configuration file.
COPYING (.txt|.md) The copyright and license notices.
INSTALL (.txt|.md) Build and installation instructions.
README (.txt|.md) Basic summary and references to the documentation.

See also:

The Project Template for a complete list of required and other standard project files. The CMake BASIS Package itself
also serves as an example of a project following this standard layout.

Note: Not all of the named subdirectories must exist in every project.

7 Support

7.1 Report Issue

Please report any issues with BASIS, including bug reports, feature requests, or support questions, on GitHub. Before
opening a new issue, we recommend a look at the frequently asked questions below and a search of the already reported
open issues.

7.2 Frequently Asked Questions

Standard CMake Commands

Can I still use standard CMake calls such as add_library, or is some BASIS functionality lost?

Probably. However, you will definitely lose much of the useful functionality that BASIS was created to provide. This
kind of usage has also not been heavily tested so it is not recommended. The BASIS philosophy is definitely that a
project that switches to BASIS uses the basis_* CMake commands wherever possible. Consider BASIS an extension
to CMake, but if you run into issues you can file a ticket and we will attempt to address the problem.

CMake Package Configuration

Can I use the <Package>Config.cmake files of projects that do not use BASIS?

In <Package>Config.cmake files of other projects, it is fine that there will be standard CMake commands add in-
clude/library directories or import targets. BASIS is “smart” enough to extract this information properly by overriding
the standard CMake commands.

78

https://cmake-basis.github.io/apidoc/latest/BasisProject_8cmake.html
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gad82d479d14499d09c5aeda3af646b9f6
https://github.com/cmake-basis/BASIS/issues

Export of Build Targets

Do library targets have to be manually exported?

No. This is taken care of by the functions found in the internal ExportTools.cmake module, including executable
targets which correspond to executable Python, Perl, BASH scripts, or executable binaries generated by the MATLAB
Compiler.

Does the BASISConfig.cmake file define all of the exported library targets?

As typical for CMake, import statements for exported targets are written to “export files”. These are included by the
BASISUse.cmake file which should be included by other packages which use BASIS as follows:

find_package(BASIS REQUIRED)
include(${BASIS_USE_FILE})

This is done already by the basis_use_package() function which in turn is called by basis_find_packages()
for all project dependencies right after the respective basis_find_package() call. In case of BASIS itself,
the basis_use_package(BASIS) is called by the basis_project_begin() command which also calls ba-
sis_find_packages().

Thus, all you need to do is add a call to basis_project_begin() to the root CMakeLists.txt file of your project. See the
root CMakeLists.txt of the default project template included with BASIS for an example.

Is there an easy way for users to get a list of the exported targets in a module?

No. This should probably be part of the documentation of each respective package/module. Generally with CMake,
you would have a look at the exports file of a package that can usually be found right next to the CMake package
configuration file (<Package>Config.cmake).

Look into the build directory of your BASIS build for an example. There you find the following files:

File name Description
BASISConfig.cmake Package configuration file which is included by CMake’s find_package

command.
BASISExports.cmake Import statements for exported targets.
BASISCustomEx-
ports.cmake

Import statements for exported custom targets.

BASISUse.cmake File to be included by users. Imports the exported targets.

Note: These file are generated by BASIS for every project that uses it, where BASIS is replaced by package name.

Note that these files contain the paths to the libraries and executables in the build tree. For each of these, BASIS
configures also a second version which contains then the paths for the installation tree which are all relative to the
location of the <Package>Config.cmake file and made absolute upon inclusion of these files.

The export files are generated by the internal CMake function basis_export_targets(). This function not only exports
the custom targets of a project, but also calls CMake’s export and install(EXPORT) commands for built-in targets,
i.e., C/C++ executables and libraries. This happens upon project “finalization”, i.e., basis_project_end(), which must
be called at the end of each root CMakeLists.txt, including the CMakeLists.txt file in the top-level directory of each
project module.

The exported target names are all the “fully qualified target UIDs” as used internally by BASIS to avoid tar-
get name conflicts between packages. The target name specified as argument to the basis_add_* target com-
mands is prepended by the name of the package (i.e., top-level project name in case of modules, respectively, the
PACKAGE_NAME specified in the BasisProject.cmake file) and separated by a dot (.). For example, the BA-
SIS Utilities library of the CMake BASIS package has the exported target name basis.utilities.

When two modules belong to the same package, the package name prefix of the target names can be omitted when
calling basis_target_link_libraries(), for example.

79

https://cmake-basis.github.io/apidoc/latest/ExportTools_8cmake.html
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga176bd65473e5cb933055d56592cc7357
https://cmake-basis.github.io/apidoc/latest/group__CMakeUtilities.html#ga86649325bef31a56d74a6b3aa57e9c7b
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gac9a1326ff8b06b17aebbb6b852ca73af
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga2a64dd1aba417c5c92513027ed901bd7
https://cmake-basis.github.io/apidoc/latest/group__CMakeUtilities.html#ga86649325bef31a56d74a6b3aa57e9c7b
https://cmake-basis.github.io/apidoc/latest/group__CMakeUtilities.html#ga86649325bef31a56d74a6b3aa57e9c7b
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#ga2a64dd1aba417c5c92513027ed901bd7
https://cmake-basis.github.io/apidoc/latest/group__CMakeUtilities.html#ga966c3d2d40cf32e3fd0dce2c6929e733
http://www.cmake.org/cmake/help/v2.8.12/cmake.html#command:export
http://www.cmake.org/cmake/help/v2.8.12/cmake.html#command:install
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gac399906502062e3885bcf1a00cf623f6
https://cmake-basis.github.io/apidoc/latest/group__CMakeAPI.html#gab2594b3327126ac531ef4ed806501406

8 People

Software Development

• Andreas Schuh

• Andrew Hundt

Contributors

The following people notably helped to define and shape BASIS.

• Dominique Belhachemi

• Kayhan N. Batmanghelich

• Luke Bloy

• Yangming Ou

Former Advisors at SBIA

• Christos Davatzikos

• Kilian M. Pohl

80

http://opensource.andreasschuh.com
mailto:ahundt@cmu.edu
http://www.cbica.upenn.edu/sbia/Dominique.Belhachemi
http://www.cbica.upenn.edu/sbia/Nematollah.Batmanghelich/Kayhan.Batmanghelich/Home.html
http://www.cbica.upenn.edu/sbia/Luke.Bloy
http://www.cbica.upenn.edu/sbia/Yangming.Ou
http://www.cbica.upenn.edu/sbia/Christos.Davatzikos
http://www.cbica.upenn.edu/sbia/Kilian.Pohl

	Features
	Quick Start
	First Steps

	How-to Guides
	Create/Modify a Project
	Using and Customizing Templates
	CMake Options
	Configure a Project
	Managing Test Data
	Documenting Software
	Branch and Release
	Packaging Software
	Install any Software
	Automated Testing

	Standards
	Filesystem Layout
	Project Template
	Project Modularization
	Build of Script Targets
	Command-line Parsing
	Calling Conventions

	Guidelines
	Plain Text Format

	Reference
	Basic Tools
	CMake Modules
	Utilities
	Project Layout

	Support
	Report Issue
	Frequently Asked Questions

	People

